1 |
邓帆, 谭慧俊, 董昊, 等. 预冷组合动力高超声速空天飞机关键技术研究进展[J]. 推进技术, 2018, 39(1): 1-13.
|
|
DENG F, TAN H J, DONG H, et al. Progress on key technologies of hypersonic aerospace plane with pre-cooled combined propulsion[J]. Journal of Propulsion Technology, 2018, 39(1): 1-13 (in Chinese).
|
2 |
马海波, 张蒙正. 预冷空气类动力系统发展历程浅析[J]. 火箭推进, 2019, 45(2): 1-8.
|
|
MA H B, ZHANG M Z. Preliminary analysis on development course of pre-cooling propulsion system[J]. Journal of Rocket Propulsion, 2019, 45(2): 1-8 (in Chinese).
|
3 |
蔡伊雯, 金志光, 周建兴, 等. 一种多热力循环组合发动机进气道设计方案[J]. 航空学报, 2020, 41(11): 123745.
|
|
CAI Y W, JIN Z G, ZHOU J X, et al. Design scheme of combined multiple thermodynamic cycle engine inlet[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123745 (in Chinese).
|
4 |
邹正平, 王一帆, 额日其太, 等. 高超声速强预冷航空发动机技术研究进展[J]. 航空发动机, 2021, 47(4): 8-21.
|
|
ZOU Z P, WANG Y F, ERI Q T, et al. Research progress on hypersonic precooled airbreathing engine technology[J]. Aeroengine, 2021, 47(4): 8-21 (in Chinese).
|
5 |
左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.
|
|
ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese).
|
6 |
马晓秋. 预冷吸气组合发动机研究进展与关键技术分析[J]. 科技导报, 2020, 38(12): 85-95.
|
|
MA X Q. Research progress of pre-cooled air-breathing combined engines and analysis of the key technology[J]. Science & Technology Review, 2020, 38(12): 85-95 (in Chinese).
|
7 |
罗佳茂, 杨顺华, 张建强, 等. 换热预冷发动机预冷特性和发动机性能数值研究[J]. 航空学报, 2019, 40(5): 122652.
|
|
LUO J M, YANG S H, ZHANG J Q, et al. Numerical investigation of pre-cooling characteristics of heat exchange pre-cooling engine and engine performance[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122652 (in Chinese).
|
8 |
DONG P C, TANG H L, CHEN M, et al. Overall performance design of paralleled heat release and compression system for hypersonic aeroengine[J]. Applied Energy, 2018, 220: 36-46.
|
9 |
MYLAVARAPU S K, SUN X D, CHRISTENSEN R N, et al. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers[J]. Nuclear Engineering and Design, 2012, 249: 49-56.
|
10 |
Website of Heatric Division of Meggitt (UK) Ltd[EB/OL]. [2022-07-15]. .
|
11 |
DONG P C, TANG H L, CHEN M. A trade-off analysis on the paralleled heat release and compression system of a hypersonic aeroengine[J]. Energy Procedia, 2019, 158: 1530-1536.
|
12 |
WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary Society, 2009, 62: 122-130.
|
13 |
HEMPSELL M, BOND A, VARVILL R, et al. Progress on the SKYLON and SABRE development programme[C]∥62nd International Astronaut Congress 2011. Paris: International Astronautical Federation, 2011: 7519-7525.
|
14 |
SEO J W, KIM Y H, KIM D, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers[J]. Entropy, 2015, 17(5): 3438-3457.
|
15 |
MYLAVARAPU S K, SUN X D, GLOSUP R E, et al. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility[J]. Applied Thermal Engineering, 2014, 65(1-2): 605-614.
|
16 |
SHIN J H, YOON S H. Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen[J]. Applied Thermal Engineering, 2020, 168: 114802.
|
17 |
KWON D, JIN L X, JUNG W, et al. Experimental investigation of heat transfer coefficient of mini-channel PCHE(printed circuit heat exchanger)[J]. Cryogenics, 2018, 92: 41-49.
|
18 |
LI H, LIU H X, ZOU Z P. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine[J]. Applied Thermal Engineering, 2021, 182: 116108.
|
19 |
LIU B H, LU M J, SHUI B, et al. Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery[J]. Applied Energy, 2022, 305: 117923.
|
20 |
KIM W, BAIK Y J, JEON S, et al. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1294-1302.
|
21 |
ZHAO Z C, ZHANG X, ZHAO K, et al. Numerical investigation on heat transfer and flow characteristics of supercritical nitrogen in a straight channel of printed circuit heat exchanger[J]. Applied Thermal Engineering, 2017, 126: 717-729.
|
22 |
李玮哲. 超临界甲烷在印刷电路板换热器中加热过程模拟[D]. 上海: 上海交通大学, 2019: 53-58.
|
|
LI W Z. Numerical investigation on the heating of supercritical methane in a printed circuited heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2019: 53-58 (in Chinese).
|
23 |
ZHOU Y L, YIN D D, GUO X T, et al. Numerical analysis of the thermal and hydraulic characteristics of CO2/propane mixtures in printed circuit heat exchangers[J]. International Journal of Heat and Mass Transfer, 2022, 185: 122434.
|
24 |
DENG T R, LI X H, WANG Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180: 292-302.
|
25 |
CHEN M H, KIM I H, SUN X D, et al. Transient analysis of an FHR coupled to a helium Brayton power cycle[J]. Progress in Nuclear Energy, 2015, 83: 283-293.
|
26 |
CHEN M H, SUN X D, CHRISTENSEN R N, et al. Experimental and numerical study of a printed circuit heat exchanger[J]. Annals of Nuclear Energy, 2016, 97: 221-231.
|
27 |
CHEN K Q, PU W H, ZHANG Q, et al. Thermal performance analysis on steady-state and dynamic response characteristic in solar tower power plant based on supercritical carbon dioxide Brayton cycle[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, doi: 10.1080/15567036.2021.183800 .
|
28 |
JIANG Y, LIESE E, ZITNEY S E, et al. Design and dynamic modeling of printed circuit heat exchangers for supercritical carbon dioxide Brayton power cycles[J]. Applied Energy, 2018, 231: 1019-1032.
|
29 |
MARCHIONNI M, CHAI L, BIANCHI G, et al. Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles[J]. Energy Procedia, 2019, 161: 472-479.
|
30 |
DESHMUKH A, KAPAT J, KHADSE A. Transient thermodynamic modeling of air cooler in supercritical CO2 Brayton cycle for solar molten salt application[J]. Journal of Energy Resources Technology, 2021, 143(2): 022103.
|
31 |
杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(): 13-26.
|
|
YANG G, SHAO W. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26 (in Chinese).
|
32 |
王子豪, 梁国柱. 微通道内低马赫数气体的流动与换热特性理论研究[J]. 推进技术, 2022, 43(5): 21007.
|
|
WANG Z H, LIANG G Z. Theoretical study on flow and heat transfer characteristics of gas at low Mach number in microchannels[J]. Journal of Propulsion Technology, 2022, 43(5): 21007 (in Chinese).
|
33 |
HESSELGREAVES J E. Compact heat exchangers: selection, design and operation[M]. Amsterdam: Pergamon, 2001: 226.
|
34 |
TRAN T N, WAMBSGANSS M W, FRANCE D M. Small circular- and rectangular- channel boiling with two refrigerants[J]. International Journal of Multiphase Flow, 1996, 22(3): 485-498.
|
35 |
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 257-258.
|
|
YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 257-258 (in Chinese).
|
36 |
NIST Reference Fluid Thermodynamic and Transport Properties Database[EB/OL]. [2022-07-15]. .
|
37 |
ZHAO Z C, ZHANG Y, CHEN X D, et al. Experimental and numerical investigation of thermal-hydraulic performance of supercritical nitrogen in airfoil fin printed circuit heat exchanger[J]. Applied Thermal Engineering, 2020, 168: 114829.
|