[1] SHARABI M, AMBROSINI W, HE S, et al. Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels[J]. Annals of Nuclear Energy, 2008, 35(6):993-1005. [2] LIU S H, HUANG Y P, WANG J F, et al. Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 117:595-606. [3] LIU X, XU X, LIU C, et al. Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles[J]. Applied Thermal Engineering, 2017, 116:500-515. [4] LICHT J, ANDERSON M, CORRADINI M. Heat transfer to water at supercritical pressures in a circular and square annular flow geometry[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):156-166. [5] 吴刚, 毕勤成, 王汉, 等. 超临界压力水在倾斜上升管内传热的试验研究[J]. 西安交通大学学报, 2011, 45(5):6-11. WU G, BI Q C, WANG H, et al. Heat transfer characteristics of supercritical water in inclined upward tube[J]. Journal of Xi'an Jiaotong University, 2011, 45(5):6-11(in Chinese). [6] SHARMA M, VIJAYAN P K, PILKHWAL D S, et al. Natural convective flow and heat transfer studies for supercritical water in a rectangular circulation loop[J]. Nuclear Engineering and Design, 2014, 273:304-320. [7] LEE S H. Numerical study of convective heat transfer to supercritical water in rectangular ducts[J]. International Communications in Heat and Mass Transfer, 2010, 37(10):1465-1470. [8] 程泽源, 朱剑琴, 李海旺. 竖直圆管内超临界碳氢燃料换热恶化的直径效应[J]. 航空学报, 2016, 37(10):2941-2951. CHENG Z Y, ZHU J Q, LI H W. Diameter effect on heat transfer deterioration of supercritical hydrocarbon fuel in vertical round tubes[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2941-2951(in Chinese). [9] 严俊杰, 刘耘州, 闫帅, 等. 超临界压力下碳氢燃料在竖直圆管内对流换热实验研究[J]. 工程热物理学报, 2016, 37(11):2385-2392. YAN J J, LIU G Z, YAN S, et al. Experimental investigation on convection heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes[J]. Journal of Engineering Thermophysics, 2016, 37(11):2385-2392(in Chinese). [10] 党国鑫, 仲峰泉, 陈立红, 等. 超临界态煤油流动与对流传热特性数值研究[J]. 中国科学:技术科学, 2013, 43(4):440-446. DANG G X, ZHONG F Q, CHEN L H, et al. Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions[J]. Scientia Sinica (Technologica), 2013, 43(4):440-446(in Chinese). [11] 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究[J]. 推进技术, 2010, 31(4):467-472. LI X F, ZHONG F Q, FAN X J, et al. Numerical study of convective heat transfer of aviation kerosene flows in pipe at supercritical pressure[J]. Journal of Propulsion Technology, 2010, 31(4):467-472(in Chinese). [12] ZHONG F Q, FAN X, YU G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3):543-550. [13] WEN J, HUANG H, JIA Z, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115:1173-1181. [14] 阮波, 孟华. 裂解吸热反应对乙烷超临界传热的影响[J]. 工程热物理学报, 2012, 33(1):121-124. RUAN B, MENG H. Effects of endothermic cracking on supercritical heat transfer of ethane[J]. Journal of Engineering Thermophysics, 2012, 33(1):121-124(in Chinese). [15] 阮波. 超临界压力下正癸烷裂解吸热和对流传热现象的数值模拟研究[D]. 杭州:浙江大学, 2013:73-87. RUAN B. Numerical studies of convective heat transfer of n-decane with endothermic pyrolytic reaction at supercritical pressures[D]. Hangzhou:Zhejiang University, 2013:73-87(in Chinese). [16] 徐可可. 航空煤油RP-3超临界压力湍流传热和裂解吸热现象的数值模拟研究[D]. 杭州:浙江大学, 2017:123-141. XU K K. Numerical studies of turbulent heat transfer and endothermic pyrolysis of aviation kerosene RP-3 at supercritical pressures[D]. Hangzhou:Zhejiang University, 2017:123-141(in Chinese). [17] ELY J F, HANLEY H J M. Prediction of transport properties. 1. Viscosity of fluids and mixtures[J]. Industrial and Engineering Chemistry Fundamentals, 1981, 20(4):323-332. [18] MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189(1):277-304. [19] RUAN B, HUANG S, MENG H, et al. Flow dynamics in transient heat transfer of n-Decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2017, 115:206-215. [20] RUAN B, HUANG S, MENG H, et al. Transient responses of turbulent heat transfer of cryogenic methane at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 109:326-335. [21] HUANG S, RUAN B, MENG H, et al. Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2018, 123:821-825. [22] 黄世璋, 阮波, 高效伟, 等. 超临界压力下碳氢燃料裂解与流动传热模拟的快速算法[J]. 航空学报, 2018, 39(4):95-108. HUANG S Z, RUAN B, GAO X W, et al. A fast algorithm for simulating hydrocarbon fuel heat transfer with endothermic pyrolysis under supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):95-108(in Chinese). [23] 黄世璋, 阮波, 高效伟. 超临界压力低温甲烷波纹管内强化换热数值研究[J]. 航空学报, 2017, 38(5):22-35. HUANG S Z, RUAN B, GAO X W. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):22-35(in Chinese). [24] ADEBIYI G A, HALL W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7):715-720. [25] WANG L, CHEN Z, MENG H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures[J]. Applied Thermal Engineering, 2013, 54(1):237-246. |