[1] |
BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514.
|
[2] |
JU Y G, SUN W T. Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83.
|
[3] |
DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466.
|
[4] |
ZHU S H, XU X, JI P F. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors[J]. AIAA Journal, 2017, 55(1):171-179.
|
[5] |
ZHANG Y, ZHU S H, CHEN B, et al. Hysteresis of mode transition in a dual-struts based scramjet[J]. Acta Astronautica, 2016, 128:147-159.
|
[6] |
ZHU S H, XU X, YANG Q C, et al. Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine[J]. Aerospace Science and Technology, 2018, 79:70-74.
|
[7] |
ZHANG J L, CHANG J T, MA J C, et al. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut[J]. Aerospace Science and Technology, 2017, 70:152-160.
|
[8] |
MASUMOTO R, TOMIOKA S, KUDO K, et al. Experimental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2):346-355.
|
[9] |
JU Y G, SUN W T. Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83.
|
[10] |
JU Y G, SUN W T. Plasma assisted combustion:Progress, challenges, and opportunities[J]. Combustion and Flame, 2015, 162(3):529-532.
|
[11] |
STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion[J]. Progress in Energy and Combustion Science, 2013, 39(1):61-110.
|
[12] |
LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1):72-78.
|
[13] |
CAI Z, ZHU J J, SUN M B, et al. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry[J]. Experimental Thermal and Fluid Science, 2018, 92:306-313.
|
[14] |
FENG R, LI J, WU Y, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor[J]. Aerospace Science and Technology, 2018, 79:145-153.
|
[15] |
LI X H, YANG L C, PENG J B, et al. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma[J]. Optics Express, 2016, 24(22):25362.
|
[16] |
AN B, WANG Z G, YANG L C, et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica, 2017, 137:444-449.
|
[17] |
JAGGERS H C, VON ENGEL A. The effect of electric fields on the burning velocity of various flame[J]. Combustion and Flame, 1971, 16(3):275-285.
|
[18] |
SHINOHARA K, TAKADA N, SASAKI K. Enhancement of burning velocity in premixed burner flame by irradiating microwave power[J]. Journal of Physics D:Applied Physics, 2009, 42(18):182008.
|
[19] |
KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5):962-972.
|
[20] |
BAUROV A Y, SHIBKOVA L V, SHIBKOV V M, et al. External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma[J]. Moscow University Physics Bulletin, 2013, 68(4):293-298.
|
[21] |
SHIBKOV V M, SHIBKOVA L V, KARACHEV A A, et al. The spatial-temporal evolution of combustion under conditions of low temperature discharge plasma of liquid alcohol injected into an air stream[J]. Moscow University Physics Bulletin, 2012, 67(1):138-142.
|
[22] |
SHIBKOV V M, SHIBKOVA L V, GROMOV V G, et al. Influence of surface microwave discharge on ignition of high-speed propane-air flows[J]. High Temperature, 2011, 49(2):155-167.
|
[23] |
SHIBKOV V M, SHIBKOVA L V. Parameters of the flame due to surface-microwave discharge-initiated inflammation of thin alcohol films[J]. Technical Physics, 2010, 55(1):58-65.
|
[24] |
STOCKMAN E S, ZAIDI S H, MILES R B, et al. Measurements of combustion properties in a microwave enhanced flame[J]. Combustion and Flame, 2009, 156(7):1453-1461.
|
[25] |
MICHAEL J B, CHNG T L, MILES R B. Sustained propagation of ultra-lean methane/air flames with pulsed microwave energy deposition[J]. Combustion and Flame, 2013, 160(4):796-807.
|
[26] |
OMBRELLO T, WON S H, JU Y G, et al. Flame propagation enhancement by plasma excitation of oxygen. Part II:Effects of O2(a1Δg)[J]. Combustion and Flame, 2010, 157(10):1916-1928.
|
[27] |
张贵新, 侯凌云, 刘永喜, 等.基于圆柱形谐振腔的微波点火方法[J]. 高电压技术, 2016, 42(6):1914-1920. ZHANG G X, HOU L Y, LIU Y X, et al. Microwave ignition method based on cylindrical resonant cavity[J]. High Voltage Engineering, 2016, 42(6):1914-1920(in Chinese).
|
[28] |
黄健, 王志, 兰光, 等. 微波等离子体点火的试验研究[J]. 工程热物理学报, 2015, 36(3):665-667. HUANG J, WANG Z, LAN G, et al. Experimental investigation of microwave plasma ignition[J]. Journal of Engineering Thermophysics, 2015, 36(3):665-667(in Chinese).
|
[29] |
兰光, 王志. 内燃机微波点火研究进展综述[J]. 车用发动机, 2012(3):1-6,11. LAN G, WANG Z. Research progress of ICE microwave ignition[J]. Vehicle Engines, 2012(3):1-6,11(in Chinese).
|
[30] |
兰光. 内燃机新型点火方式——微波点火的试验研究与机理模拟[D]. 北京:清华大学, 2012:37-44. LAN G. Experimental study and mechanism simulation of new ignition mode of internal combustion engine-Microwave ignition[D]. Beijing:Tsinghua University, 2012:37-44(in Chinese).
|
[31] |
王冬雪. 微波等离子体点火与助燃放电装置的理论模拟与实验研究[D]. 大连:大连理工大学, 2014:10-11. WANG D X. Theoretical simulation and experimental study of the discharge device of microwave plasma ignition and assisted combustion[D]. Dalian:Dalian University of Technology, 2014:10-11(in Chinese).
|
[32] |
WANG Z P, GU H B, CHENG L W, et al. CH* luminance distribution application and a one-dimensional model of the supersonic combustor heat release quantization[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1):45-50.
|
[33] |
RAO X, HEMAWAN K, WICHMAN I, et al. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling[J]. Proceedings of the Combustion Institute, 2011, 33(2):3233-3240.
|
[34] |
YUAN Y M, ZHANG T C, YAO W, et al. Characterization of flame stabilization modes in an ethylene-fueled supersonic combustor using time-resolved CH* chemiluminescence[J]. Proceedings of the Combustion Institute, 2017, 36(2):2919-2925.
|
[35] |
TIAN Y, YANG S H, LE J L, et al. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor[J]. International Journal of Hydrogen Energy, 2016, 41(42):19218-19230.
|
[36] |
程柳维, 仲峰泉, 杜蒙蒙, 等. 基于分形几何的超声速燃烧火焰形态表征方法研究[J]. 实验流体力学, 2019, 33(1):97-102. CHENG L W, ZHONG F Q, DU M M, et al. Study of characterization methods of supersonic combustion flame based on fractal geometry[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1):97-102(in Chinese).
|