[1] |
乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
|
[2] |
陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
|
[3] |
WHITHAM G B. The flow pattern of a supersonic projectile[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-348.
|
[4] |
WHITHAM G B. On the propagation of weak shock waves[J]. Journal of Fluid Mechanics, 1956, 1(3):290-318.
|
[5] |
ANDERSON J D. Fundamentals of aerodynamics[M]. 6th ed. New York:McGraw-Hill, 2017:575-581.
|
[6] |
史爱明, DOWELL E H. 斜激波总压损失率极小值理论解与物理意义[J]. 航空学报, 2018, 39(12):122517. SHI A M, DOWELL E H. Theoretical solutions and physical significances for minimum ratio of total pressure loss by oblique shock[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):122517(in Chinese).
|
[7] |
EMANUEL G. Analytical fluid dynamics[M]. 2nd ed. Boca Raton, FL:CRC Press, 2001:297-307.
|
[8] |
ELAICHI T, ZEBBICHE T. Stagnation temperature effect on the conical shock with application for air[J]. Chinese Journal of Aeronautics, 2018, 31(4):672-697.
|
[9] |
BLASIUS H. The boundary layers in fluids with little friction:NACA TM 1256[R]. Washington, D.C.:NACA, 1950.
|
[10] |
HOWARTH L. Concerning the effect of compressibility on laminar boundary layers and their separation[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1948, 194:16-42.
|
[11] |
ILLINGWORTH C R. Steady flow in the laminar boundary layer of a gas[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 199:533-558.
|
[12] |
STEWARTSON K. Correlated incompressible and compressible boundary layers[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1949, 200:84-100.
|
[13] |
RUBESIN M W, JOHNSON H A. A critical review of skin-friction and heat-transfer solutions of the laminar boundary layer of a flat plate[J]. Transaction of American Society of Mechanical Engineering, 1949, 71:383-388.
|
[14] |
ECKERT E R G, TEWFIK O E. Use of reference enthalpy in specifying the laminar heat-transfer distribution around blunt bodies in dissociated air[J]. Journal of the Aerospace Science, 1960, 27(6):464-466.
|
[15] |
MEADOR W E, SMART M K. Reference enthalpy method developed from solutions of the boundary layer equations[J]. AIAA Journal, 2005, 43(1):135-139.
|
[16] |
CEBECI T, COUSTEIX J. Modeling and computation of boundary-layer flows[M]. 2nd ed. Long Beach, CA:Horizon Publishing Inc., 2005:357-365.
|
[17] |
龚安龙, 刘晓文, 刘周, 等. 高超声速壁面黏性力快速计算方法[J]. 空气动力学学报, 2017, 35(1):33-38. GONG A L, LIU X W, LIU Z, et al. A rapid method for hypersonic skin viscous force calculation[J]. Acta Aerodynamica Sinica, 2017, 35(1):33-38(in Chinese).
|
[18] |
FEGUSON F, CORBETT T, AKWABOA S, et al. The development of waveriders from an axisymmetric flowfield:AIAA-2007-0847[R]. Reston, VA:AIAA, 2007.
|
[19] |
SCHLICHTING H. Boundary-layer theory[M]. 7th ed. New York:McGraw-Hill, 1979:635-640.
|
[20] |
PALACIOS F, COLONNO M R, ARANAKE A C, et al. Stanford University Unstructured (SU2):An open-source integrated computational environment for multi-physics simulation and design:AIAA-2013-0287[R]. Reston, VA:AIAA, 2013.
|
[21] |
VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
|
[22] |
张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2):143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2):143-165(in Chinese).
|
[23] |
VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady solution:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
|
[24] |
TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves, 1994, 4(1):25-34.
|
[25] |
CHEN F, LIU H, YANG Z F, et al. Tracking characteristics of tracer particles for PIV measurements in supersonic flows[J]. Chinese Journal of Aeronautics, 2017, 30(2):577-585.
|
[26] |
LEE C B, WANG S. Study of the shock motion in a hypersonic shock system turbulent boundary-layer interaction[J]. Experiments in Fluids, 1995, 19(3):143-149.
|
[27] |
童福林, 李新亮, 段焰辉. 超声速压缩拐角激波/边界层干扰动力学模态分解[J]. 航空学报, 2017, 38(12):121376. TONG F L, LI X L, DUAN Y H. Dynamic mode decomposition of shock wave and supersonic boundary layer interactions in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):121376(in Chinese).
|
[28] |
TONG F L, YU C P, TANG Z G, et al. Numerical studies of shock wave interactions with a supersonic turbulent boundary layer in compression corner:Turning angle effects[J]. Computers and Fluids, 2017, 149:56-69.
|
[29] |
GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. High-resolution PIV measurements of a transitional shock wave-boundary layer interaction[J]. Experiments in Fluids, 2015, 56:113.
|
[30] |
GIEPMAN R H M, SCHRIJER F F J, VAN OUDHEUSDEN B W. A parametric study of laminar and transitional oblique shock wave reflections[J]. Journal of Fluid Mechanics, 2018, 844:187-215.
|