航空学报 > 2019, Vol. 40 Issue (12): 123196-123196   doi: 10.7527/S1000-6893.2019.23196

斜激波极值规律的边界层影响

温浩, 史爱明, 鄢荣   

  1. 西北工业大学 航空学院 NPU-Duke空气动力与气动弹性联合实验室, 西安 710072
  • 收稿日期:2019-06-06 修回日期:2019-07-03 出版日期:2019-12-15 发布日期:2019-08-23
  • 通讯作者: 史爱明 E-mail:sam@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(10602046);民机项目(2018F8);西北工业大学研究生创意创新种子基金(ZZ2019048)

Boundary layer effects on rules of minimum oblique shock strength

WEN Hao, SHI Aiming, YAN Rong   

  1. NPU-Duke Topic Group for Aerodynamics and Aeroelasticity, School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2019-06-06 Revised:2019-07-03 Online:2019-12-15 Published:2019-08-23
  • Supported by:
    National Natural Science Foundation of China (10602046); Project of CARP (2018F8); Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University (ZZ2019048)

摘要: 采用边界层理论与斜激波/膨胀波精确算法,建立一种结合Eckert参考温度法和Illingworth-Stewartson变换法优势的边界层权重算法,用于研究超声速黏性楔面边界层位移厚度对斜激波极值规律的影响。分别应用层流Navier-Stokes方程和湍流Navier-Stokes方程的CFD解算器对边界层新模型进行了算例精度评估。在来流马赫数为1.2~2.4和楔面角为3°~20°的范围内,压强比的相对误差小于0.1%。计入层流与湍流边界层影响的理论模型研究表明,边界层影响使得最优马赫数增加;对于层流边界层,最优马赫数增量约为0.001 5~0.003 3;对于湍流边界层,最优马赫数增量约为0.002 8~0.006 1。

关键词: 斜激波, 边界层厚度, 激波强度, 超声速楔面流动, 激波模型

Abstract: By using the boundary layer theory and the shock/expansion wave exact solutions, a new weighted method to balance Eckert's reference temperature and Illingworth-Stewartson transformation is put forward to model boundary layer effects on the oblique shock structure of a supersonic wedge flow. The CFD solvers of laminar and turbulent Navier-Stokes equations are separately applied to evaluate the new model. The errors of pressure ratio between CFD and theoretical values are less than 0.1% at a range of Mach number 1.2-2.4 and wedge angle 3°-20°. The theoretical model is used to study rules of minimum oblique shock strength. Optimal Mach numbers for minimum strength of oblique shocks will slightly increase when considering boundary layer effects. The amounts of increase of optimal Mach numbers are 0.001 5-0.003 3 for laminar flow and 0.002 8-0.006 1 for turbulent flow.

Key words: oblique shock waves, boundary layer thickness, shock strength, supersonic wedge flow, shock waves models

中图分类号: