[1] HUDSON L, CRAIG S. Thermal-mechanical testing of hypersonic vehicle structures[C]//Workshop of Materials and Structure for Hypersonic Flight, 2007. [2] 任青梅. 热/结构试验技术研究进展[J]. 飞航导弹, 2012(2):91-96. REN Q M. Review of thermal/structure test technique[J]. Aerodynamic Missile Journal, 2012(2):91-96(in Chinese). [3] TURNER T L, ASH R L. Analysis of the thermal environment and thermal response associated with thermal acoustic testing:AIAA-1990-0975[R]. Reston, VA:AIAA, 1990. [4] TURNER T L, ASH R L. An analysis of the radiation field beneath a bank of tubular quartz lamp:NASA-CR-191551[R]. Washington, D.C.:NASA, 1994. [5] TURNER T L, ASH R L. Prediction of the thermal environment and thermal response of simple panels exposed to radiant heat[J]. Journal of the American Pharmaceutical Association, 1989, 27(3):258-263. [6] TURNER T L, ASH R L. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems:NASA-TP-3387[R]. Washington, D.C.:NASA, 1994. [7] 杨晓宁, 孙玉玮, 余谦虚. 提高红外灯阵热流模拟均匀性的优化设计方法[J]. 航天器环境工程, 2012, 29(1):27-31. YANG X N, SUN Y W, YU Q X. The optimized design for improving flux uniformity of infrared lamp array[J]. Spacecraft Environment Engineering, 2012, 29(1):27-31(in Chinese). [8] 张伟, 张正平, 李海波, 等. 高超声速飞行器结构热试验技术进展[J]. 强度与环境, 2011, 38(1):1-8. ZHANG W, ZHANG Z P, LI H B, et al. Progress on thermal test technique of hypersonic vehicle structures[J]. Structure & Environment Engineering, 2011, 38(1):1-8(in Chinese). [9] 李翔, 傅波. 高超声速飞行器复杂结构热试验技术[J]. 航空学报, 2016, 37(S1):73-79. LI X, FU B. Thermal test technique of complex structure of hypersonic aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):73-79(in Chinese). [10] 吴大方, 王岳武, 高镇同, 等. 1 500℃高温氧化环境下C/SiC复合材料结构的热/力联合试验[J]. 复合材料学报, 2015, 32(4):1083-1091. WU D F, WANG Y W, GAO Z T, et al. Thermal-mechanical joint test of C/SiC composite structure in high-temperature/oxidation environment up to 1500℃[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1083-1091(in Chinese). [11] GROSVELD F W, RIZZI S A, RICE C E. Dynamic response of X-37 hot structure control surfaces exposed to controlled reverberant acoustic excitation:NASA-TM-213519[R]. Washington, D.C.:NASA, 2005. [12] HUDSON L. Thermal-mechanical testing of hypersonic vehicle structures:NASA-TM-13159[R]. Washington, D.C.:NASA, 2008. [13] JENKINS J M, QUINN R D. Historical perspective of the YF-12A thermal loads and structures program:NASA-TM-104317[R]. Washington, D.C.:NASA, 1996. [14] 朱言旦, 刘骁, 曾磊, 等. 大面积气动加热的石英灯阵模拟优化设计研究[J]. 航空学报, 2017, 38(9):121159. ZHU Y D, LIU X, ZENG L, et al. Study on optimization design of aerodynamic heating of large area simu-lated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121159(in Chinese). [15] 朱言旦, 刘骁, 曾磊, 等. 石英灯热流分布计算方法对比研究[C]//工程热物理年会传热传质分会, 2017. ZHU Y D, LIU X, ZENG L, et al. Comparison research of methods for quartz lamp heat flux simulation[C]//Heat and Mass Transfer Division of Annual Meeting of China Engineering Thermophysics, 2017(in Chinese). [16] 朱言旦, 曾磊, 董威, 等. 石英灯阵热流分布规律计算与试验研究[J]. 宇航学报, 2017, 38(10):1131-1138. ZHU Y D, ZENG L, DONG W, et al. Computational and experimental study of quartz lamp array heat flux distribution[J]. Journal of Astronautics, 2017, 38(10):1131-1138(in Chinese). |