[1] GIERLOFF J, ROBERTSON S, BOUSKA D. Computer analysis of aero-optic effects:AIAA-1992-2794[R]. Reston,VA:AIAA, 1992. [2] CLARK R, FARRIS R. A numerical method to predict aero-optical performance in hypersonic flight:AIAA-1987-1396[R]. Reston,VA:AIAA, 1987. [3] LUTZ S A. Modeling of density fluctuations in supersonic turbulent boundary layer[J]. AIAA Journal, 1989, 27(6):822-823. [4] POND J E, SUTTON G W. Aero-optic performance of an aircraft forward-facing optical turret[J]. Journal of Aircraft, 2015, 43(3):600-607. [5] RODI W. A new algebraic relation for calculating the Reynolds stresses[C]//Gesellschaft fuer angewandte Mathematik und Mechanik, Wissenschaftliche Jahrestagung, 1976:219-221. [6] WEI H, CHEN C. A second-order algebraic model for turbulent density fluctuation:AIAA-1996-0427[R]. Reston, VA:AIAA, 1996. [7] WEATHERITT J, PICHLER R, SANDBERG R D, et al. Machine learning for turbulence model development using a high-fidelity HPT cascade simulation:GT2017-63497[R]. New York:ASME, 2017. [8] LING J, TEMPLETON J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty[J]. Physics of Fluids, 2015, 27(8):42032-42094. [9] LING J. Using machine learning to understand and mitigate model form uncertainty in turbulence models[C]//14th International Conference on Machine Learning and Applications. Piscataway, NJ:IEEE Press, 2015:813-818. [10] WANG J X, WU J L, XIAO H. Physics-informed machine learning for predictive turbulence modeling:Using data to improve RANS modeled Reynolds stresses[J]. Physical Review Fluids, 2016, 2:034603. [11] EDELING W N, IACCARINO G, CINNELLA P. Data-free and data-driven RANS predictions with quantified uncertainty[J]. Flow, Turbulence & Combustion, 2018, 100(3):593-616. [12] PARISH E J, DURAISAMY K. A paradigm for data-driven predictive modeling using field inversion and machine learning[J]. Journal of Computational Physics, 2016, 305:758-774. [13] SINGH A P, DURAISAMY K. Using field inversion to quantify functional errors in turbulence closures[J]. Physics of Fluids, 2016, 28(4):045110. [14] TRACEY B, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development:AIAA-2015-1287[R]. Reston, VA:AIAA, 2015. [15] YARLANKI S, RAJENDRAN B, HAMANN H. Estimation of turbulence closure coefficients for data centers using machine learning algorithms[C]//Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway, NJ:IEEE Press, 2012:38-42. [16] RAY J, LEFANTZI S, ARUNAJATESAN S, et al. Bayesian parameter estimation of a k-ε model for accurate jet-in-crossflow simulations[J]. AIAA Journal, 2016, 54(8):2432-2448. [17] RAY J, LEFANTZI S, ARUNAJATESAN S, et al. Bayesian calibration of a k-ε turbulence model for predictive jet-in-crossflow simulations:AIAA-2014-2085[R]. Reston, VA:AIAA, 2014. [18] DURAISAMY K, ZHANG Z J, SINGH A P. New approaches in turbulence and transition modeling using data-driven techniques:AIAA-2015-1284[R]. Reston,VA:AIAA, 2015. [19] ZHANG Z J, DURAISAMY K. Machine learning methods for data-driven turbulence modeling:AIAA-2015-2460[R]. Reston,VA:AIAA, 2015. [20] ZHANG X, SHU C. Positivity-preserving high order finite difference WENO schemes for compressible Euler equations[J]. Journal of Computational Physics, 2012, 231(5):2245-2258. [21] JIANG G, SHU C. Efficient Implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1):202-228. [22] SCHLATTER P, STOLZ S, KLEISER L. Large-eddy simulation of transition in wall-bounded flow[C]//40th JAXA Workshop on "Investigation and Control of Boundary-Layer Transition". Tokyo:Japan Aerospace Exploration Agency, 2007:13-16. [23] GATSKI T B, ERLEBACHER G. Numerical simulation of a spatially evolving supersonic turbulent boundary layer:NASA/TM-2002-211934[R]. Washington, D.C.:NASA, 2002. [24] PIROZZOLI S, GRASSO F, GATSKI T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25[J]. Physics of Fluids, 2004, 16(3):530-545. [25] WANG K, WANG M. Aero-optics of subsonic turbulent boundary layers[J]. Journal of Fluid Mechanics, 2012, 696:122-151. |