[1] 朱自强, 兰世隆. 超声速民机和降低音爆研究[J]. 航空学报, 2015, 36(8):2507-2528. ZHU Z Q, LAN S L. Study of supersonic commercial transport and reduction of sonic boom[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2507-2528(in Chinese). [2] WHITHAM G. The flow pattern of a supersonic project[J]. Communications on Pure and Applied Mathematics, 1952, 5(3):301-347. [3] HAYES W D. Brief review of basic theory:Sonic boom research:NASA SP-147[R]. Washington, D.C.:NASA, 1967. [4] SEEBASS R. Sonic boom theory[J]. Journal of Aircraft, 1969, 6(3):177-184. [5] SEEBASS R, GEORGE A R. Sonic boom minimization[J]. Journal of the Acoustical Society of America, 1972, 51(2):686-694. [6] SEEBASS R, ARGROWB. Sonic boom minimization revisited:AIAA-1998-2956[R]. Reston, VA:AIAA, 1998. [7] CARLSON H W. Simplified sonic boom prediction:NASA TP-1122[R]. Washington, D.C.:NASA, 1978. [8] THOMAS L C. Extrapolation of sonic boom pressure signatures by the waveform parameter method:NASA TN D-6832[R]. Washington, D.C.:NASA, 1972. [9] CLEVELAND O R. Propagation of sonic booms through a real, stratified atmosphere[D]. Austin:University of Texas at Austin, 1995:6-37. [10] POTAPKIN A V, KOROTAEVA T A, MOSKVICHEV D Y, et al. Anadvanced approach for far-field sonic boom prediction:AIAA-2009-1056[R]. Reston, VA:AIAA, 2009. [11] YAMASHITA R, SUZUKI K. Full-field sonic boom simulation in real atmosphere:AIAA-2014-2269[R]. Reston, VA:AIAA, 2014. [12] WINTZER M, NEMEC M, AFTOSMIS J M. Adjoint-based adaptive mesh refinement for sonic boom prediction:AIAA-2008-6593[R]. Reston, VA:AIAA, 2008. [13] RALLABHANDI S K. Advanced sonic boom prediction using the augmented Burgers equation[J]. Journal of Aircraft, 2011, 48(4):1245-1253. [14] 陈鹏, 李晓东. 基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测法[J]. 航空动力学报, 2010, 25(2):359-365. CHEN P, LI X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation[J]. Journal of Aerospace Power, 2010, 25(2):359-365(in Chinese). [15] 但聃, 杨伟. 超音速公务机声爆计算与布局讨论[J]. 航空工程进展, 2012, 3(1):8-15. DAN D, YANG W. Supersonic business jet sonic boom computation and layout discussion[J]. Advances in Aeronautical Science and Engineering, 2012, 3(1):8-15(in Chinese). [16] 冯晓强. 声爆计算方法研究及在超声速客机设计的应用[D]. 西安:西北工业大学, 2012:9-24. FENG X Q. The research of sonic boom prediction method and application in supersonic aircraft design[D]. Xi'an:Northwestern Polytechnical University, 2012:9-24(in Chinese). [17] 冯晓强, 宋笔锋, 李占科, 等. 超声速飞机低声爆布局混合优化方法研究[J]. 航空学报, 2013, 34(8):1768-1777. FENG X Q, SONG B F, LI Z K, et al. Hybrid optimization approach research for low sonic boom supersonic aircraft configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1768-1777(in Chinese). [18] CHOI S, ALONSO J J, KROO M I. Multi-fidelity design optimization of low-boom supersonic business jets:AIAA-2004-4371[R]. Reston, VA:AIAA, 2004. [19] CHAN K M. Supersonicaircraft optimization for minimizing drag and sonic boom[D]. Palo Alto:Stanford University, 2003:48-96. [20] FARHAT C, MAUTE K, ARGROW B, et al. Shape optimization methodology for reducing the sonic boom initial pressure rise[J]. AIAA Journal, 2007, 45(5):1007-1018. [21] AFTOSMIS M J, NEMEC M, CLIFF S E. Adjoint-based low-boom design with Cart3D:AIAA-2011-3500[R]. Reston, VA:AIAA, 2011. [22] WINTZER M, KROO I. Optimization and adjoint-based CFD for the conceptual design of low sonic boom aircraft:AIAA-2012-0963[R]. Reston, VA:AIAA, 2012. [23] RALLABHANDI K S. Sonic boom adjoint methodology and its applications:AIAA-2011-3497[R]. Reston, VA:AIAA, 2011. [24] RALLABHANDI K S. Application of adjoint methodology to supersonic aircraft design using reversed equivalent areas[J]. Journal of Aircraft, 2014, 51(6):1873-1882. [25] MINELLI A, SALAH E D I, CARRIER G. Advancedoptimization approach for supersonic low-boom design:AIAA-2012-2168[R]. Reston, VA:AIAA, 2012. [26] LI J H, TIM W, RAMESH K A. Shapeoptimization of supersonic bodies to reduce sonic boom signature:AIAA-2016-3432[R]. Reston, VA:AIAA, 2016. [27] LI J H, KRAMPF J, MITCHELL J, et al. Prediction,minimization and propagation of sonic boom from supersonic bodies:AIAA-2017-0277[R]. Reston, VA:AIAA, 2017. [28] CARLSON H W, MACK R J, MORRIS O A. A wind tunnel investigation of the effect of body shape on sonic boom pressure distributions:NASA TN D-3106[R]. Washington, D.C.:NASA, 1965. [29] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). [30] GIUNTA A A, WOJTKIEWICZ J S F, ELDRED M S. Overview of modern design of experiments methods for computational simulations:AIAA-2003-649[R]. Reston, VA:AIAA, 2003. [31] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. Journal of the Chemical Metallurgical & Mining Society of South Africa, 1951, 52(6):119-139. [32] HAN Z H, GOERTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1285-1296. [33] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346. [34] FORRESTER A I J, KEANE A J. Recentadvances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79. [35] JONES D R. Ataxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4):345-383. [36] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943. [37] HAN Z H. SurroOpt a generic surrogate-based optimization code for aerodynamic and multidisciplinary design:ICAS-2016-0281[R]. Bonn:ICAS, 2016. [38] GILL P E, MURRAY W. NPSOL:AFORTRAN package for nonlinear programming[EB/OL]. (2013-07-15)[2016-07-20]. http://www.sbsi-sol-optimize.com. [39] AFTOSMIS M J, NEMEC M. Cart3D simulations for the first AIAA sonic boom prediction workshop:AIAA-2014-0558[R]. Reston, VA:AIAA, 2014. [40] DAGRAU F, LOSEILLE A, SALAH E D I. Computational and experimental assessment of models for the first AIAA sonic boom prediction workshop using high fidelity CFD methods with mesh adaptation:AIAA-2014-2009[R]. Reston, VA:AIAA,2014. [41] HUNTON W L, HICKS M R, MENDOZA P J. Some effects of wing planform on sonic boom:NASA TN D-7160[R]. Washington, D.C.:NASA, 1973. [42] MA P B, WANG G, REN J, et al. Near field sonic boom analysis with HUNS3D solver:AIAA-2017-0038[R]. Reston, VA, AIAA, 2017. |