[1] HORLOCK J H, LEWIS J F, PERCIVAL P E, et al. Wall stall in compressor cascade[J]. Journal of Basic Engineering, 1966, 88(3):637-648.
[2] DENTON J D. Loss mechanisms in turbomachines[J]. Journal of Turbomachinery-transactions of the ASME, 1993, 115(4):621-656.
[3] BROICHHAUSEN K D, HARSTER P. Aerodynamic analysis of a two stage transonic compressor with variable stator vanes:90-GT-073[R]. New York:ASME, 1990.
[4] STRAFFORD B. The prevention of separation and flow reversal in the corners of compressor blade cascades[J]. Aeronautical Journal, 1973, 77(749):249-256.
[5] 王掩刚, 牛楠, 赵龙波, 等. 端壁抽吸位置对压气机叶栅角区分离控制的影响[J]. 推进技术, 2010, 31(4):433-437. WANG Y G, NIU N, ZHAO L B, et al. Effect on corner separation control for high load compressor cascade with different end-wall BLS position[J]. Journal of Propulsion Technology, 2010, 31(4):433-437(in Chinese).
[6] 郭爽, 陈绍文, 陆华伟, 等. 组合抽吸对大转角扩压叶栅性能的影响[J]. 航空动力学报, 2010, 25(12):2697-2703. GUO S, CHEN S W, LU H W, et al. Effect of compound boundary layer suction on the performance of a high-load diffusion compressor cascade with a large camber angle[J]. Journal of Aerospace Power, 2010, 25(12):2697-2703(in Chinese).
[7] 茅晓晨, 刘波, 曹志远, 等. 端壁射流对压气机叶栅角区分离控制的研究[J]. 推进技术, 2014, 35(12):1615-1622. MAO X C, LIU B, CAO Z Y, et al. Research on corner separation control for compressor cascade with end-wall jet flow[J]. Journal of Propulsion Technology, 2014, 35(12):1615-1622(in Chinese).
[8] 赵小虎, 吴云, 李应红, 等. 高负荷压气机叶栅分离结构及其等离子体流动控制[J]. 航空学报, 2012, 33(2):208-219. ZHAO X H, WU Y, LI Y H, et al. Separation structure and plasma flow control on highly loaded compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(2):208-219(in Chinese).
[9] LEPOT I, MENGISTU T, HIERNAUX S, et al. Highly loaded LPC blade and non-axisymmetric hub profiling optimization for enhanced efficiency and stability:GT2011-46261[R]. New York:ASME, 2011.
[10] 李秋实, 杨春, 肖文富, 等. 端壁造型抑制角区失速的数值研究[J]. 自然科学进展, 2009, 19(5):537-543. LI Q S, YANG C, XIAO W F, et al. Numerical study on inhibition of corner stall by endwall contouring[J]. Progress in Natural Science, 2009, 19(5):537-543(in Chinese).
[11] 卢家玲, 楚武利, 胡书珍, 等. 端壁造型技术在亚声轴流压气机级中的应用[J]. 航空动力学报, 2009, 24(5):1101-1107. LU J L, CHU W L, HU S Z, et al. Application of endwall contour on subsonic axial flow compressor stage[J]. Journal of Aerospace Power, 2009, 24(5):1101-1107(in Chinese).
[12] HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(3):021026.
[13] HAGE W, MEYER R, PASCHEREIT C. Control of secondary flow in a high loaded compressor stage by means of a groove structure on the sidewalls:AIAA-2007-4278[R]. Reston, VA:AIAA, 2007.
[14] DRING R P, JOSLYN H D, HARDIN L W. An investigation of axial compressor rotor aerodynamics[J]. Journal of Engineering for Power, 1982, 104(1):84-96.
[15] JOSLYN H D, DRING R P. Axial compressor stator aerodynamics[J]. Journal of Engine for Gas Turbine and Power, 1985, 107(2):485-493.
[16] SCHULZ H D, GALLUS H D. Experimental investigation of the three-dimensional flow in an annular compressor cascade[J]. Journal of Turbomachinery, 1988, 110(4):467-478.
[17] BARANKIEWICZ W S, HATHAWAY M D. Impact of variable-geometry stator hub leakage in a low speed axial compressor:98-GT-194[R]. New York:ASME, 1998.
[18] SAATHOFF H, STARK U. Endwall boundary layer separation in a single-stage axial-flow low-speed compressor and a high-stagger compressor cascade[J]. Forschung Auf Dem Gebiete Des Ingenieurwesens, 2000, 65(8):217-224.
[19] MA W, OTTAVY X, LU L P, et al. Experimental study of comer stall in a linear compressor cascade[J]. Chinese Journal of Aeronautics, 2011, 24(3):235-242.
[20] SCHULZ H D, GALLUS H D, LAKSHMINARAYANA B. Three-dimensional separated flow field in the endwall region of an annular compressor cascade in the presence of rotor-stator interaction:Part 1-Quasi-steady flow field and comparison with steady-state data[J]. Journal of Turbomachinary, 1990, 112(4):669-678.
[21] DONG Y, GALLIMORE S J, HODSON H P. Three-dimensional flows and loss reduction in axial compressors[J]. Journal of Turbomachinary, 1987, 109(3):354-360.
[22] SHABBIR A, CELESTINA M L, ADAMCZYK J J, et al. The effect of hub leakage flow on two high speed axial flow compressor rotors:97-GT-346[R]. New York:ASME, 1997.
[23] RIBI B, MEYER M P. Influence of gap between casing and variable stator blade on axial compressor performance:GT2008-50301[R]. New York:ASME, 2008.
[24] LEE C, SONG J, LEE S, et al. Effect of a gap between inner casing and stator blade on axial compressor performance:GT2010-22439[R]. New York:ASME, 2010.
[25] BOEHLE M, STARK U. A numerical investigation of the effect of end-wall boundary layer skew on the aerodynamic performance of a low aspect ratio, high turning compressor cascade:IMECE2007-44049[R]. New York:ASME, 2007.
[26] LI X J, CHU W L, WU Y H. Numerical investigation of inlet boundary layer skew in axial-flow compressor cascade and the corresponding non-axisymmetric end wall profiling[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 2014, 228(6):638-656.
[27] GALLUS H E, HAH C, SCHULZ H D. Experimental and numerical investigation of three-dimensional viscous flows and vortex motion inside an annular compressor blade row[J]. Journal of Turbomachinery, 1991, 113:198-206.
[28] HAH C, LOELLBACH J. Development of hub corner stall and its influence on the performance of axial compressor blade rows[J]. Journal of Turbomachinery, 1999, 121(1):67-77.
[29] WEBER A, SCHREIBER H A, FUCHS R, et al. 3-D transonic flow in a compressor cascade with shock-induced corner stall[J]. Journal of Turbomachinery, 2002, 124(3):358-366.
[30] GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2):331-339.
[31] KAN X X, LU H W. Topological characterization of vortex structures on a transonic compressor stator during the stall process[J]. Journal of Aerospace Engineering, 2016, 230(3):566-580.
[32] LEWIN E, KO?ULOVI? D, STARK U. Experimental and numerical analysis of Hub-corner stall in compressor cascades:GT2010-22704[R]. New York:ASME, 2010.
[33] ZHANG Y F, MAHALLATI A, BENNER M. Experimental and numerical investigation of corner stall highly-loaded compressor cascade:GT2014-27204[R]. New York:ASME, 2014.
[34] DE HALLER P. Das verhalten von tragflugelgittern in axialverdichtern und im windkana[J]. BWK Zeitschrift, 1953, 5(10):333-337.
[35] LIEBLEIN S, SCHWENK F C, BRODERICK R L. Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements:NASA RM E53D01[R]. Washington, D.C.:NACA, 1953.
[36] LEI V M, SPAKOVSZKY Z S, GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery, 2006, 130(3):475-486.
[37] YU X J, LIU B J. A prediction model for corner separation/stall in axial compressors:GT2010-22453[R]. New York:ASME, 2010.
[38] SMITH L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Fluids Engineering, 1963, 85(3):401.
[39] SASAKI T, BREUGELMANS F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. Journal of Turbomachinery, 1998, 120(3):454-463.
[40] WANG Z Q, SU J X, ZHONG J J. The effect of the pressure distribution in a three-dimensional flow field of a cascade on the type of curved blade:94-GT-409[R]. New York:ASME, 1994.
[41] WEINGOLD H D, NEUBERT R J, BEHLKE R F, et al. Bowed stators:an example of CFD applied to improve multistage compressor efficiency[J]. Journal of Turbomachinery, 1997, 119(2):161-168.
[42] GVMMER V, WENGER U, KAU H, et al. Using sweep and dihedral to control three-dimensional flow in transonic stators of axial compressors[J]. Journal of Turbomachinery, 2000, 123(1):40-48.
[43] ROY B, LAXMIPRASANNA P A, BORIKAR V, et al. Low speed studies of sweep and dihedral effects on compressor cascades:GT2002-30441[R]. New York:ASME, 2002.
[44] FISCHER A, RIESS W, SEUME J R. Performance of strongly bowed stators in a 4-stage high speed compressor:GT2003-38392[R]. New York:ASME, 2003.
[45] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part I:University research and methods development[J]. Journal of Turbomachinery, 2002, 124(4):33-47.
[46] GALLIMORE S J. The use of sweep and dihedral in multistage axial flow compressor blading-Part Ⅱ:Low and high-speed designs and test verification[J]. Journal of Turbomachinery, 2002, 124(4):49-59.
[47] WOOLLATT G, LIPPETT D, IVEY P C, et al. The design, development and evaluation of 3D aerofoils for high speed axial compressors:Part 2-Simulation and comparison with experiment:GT2005-68793[R]. New York:ASME, 2005.
[48] JI L C, SHAO W W, YI W L, et al. A model for describing the influences of SUC-EW dihedral angle on corner separation:GT2007-27618[R]. New York:ASME, 2007.
[49] 季路成, 田勇, 李伟伟, 等. 叶身/端壁融合技术研究[J]. 航空发动机, 2012, 38(6):5-10. JI L C, TIAN Y, LI W W, et al. Investigation on blended blade and endwall technique[J]. Aeroengine, 2012, 38(6):5-10(in Chinese).
[50] 季路成, 李嘉宾, 伊卫林. 第三代三维叶片技术思路分析[J]. 工程热物理学报, 2015, 36(5):989-994. JI L C, LI J B, YI W L.The way to the third generation of 3-D blades[J]. Journal of Engineering Thermophysics, 2015, 36(5):989-994(in Chinese).
[51] MVLLER R, SAUER H, VOGELER K, et al. Influencing the secondary losses in compressor cascades by a leading edge bulb modification at the endwall:GT2002-30442[R]. New York:ASME, 2002.
[52] 伊卫林, 唐方明, 陈志民, 等. 改善压气机端区流动的新方法——前缘边条叶片技术[J]. 航空动力学报, 2015, 30(7):1691-1698. YI W L, TANG F M, CHEN Z M, et al. New approach to improve the endwall flow of compressor-Leading edge strake blade technique[J]. Journal of Aerospace Power, 2015, 30(7):1691-1698(in Chinese).
[53] PRUMPER H. Application of boundary layer fences in turbomachinery[J]. AGARG Ograph, 1972, 164(Ⅱ-3):311-317.
[54] KAWAI T, SHINOKI S, Adachi T. Secondary flow control and loss reduction in a turbine cascade using endwall fences[J]. JSME International Journal, Series B, 1989, 32:375-387
[55] KAWAI T, SHINOKI S, ADACHI T. Visualization study of three-dimensional flows in a turbine cascade endwall region[J]. JSME International Journal, Series B, 1990, 33(2):256-264
[56] KAWAI T. Effect of combined boundary layer fences on turbine secondary flow and losses[J]. JSME International Journal, Series B, 1994, 37(2):377-384.
[57] MEYER W, BECHERT D W, HAGE W. Sekundär-strömungsbeeinflussung in axialen turbomaschinen zur verbesserung des stufenwirkungsgrades:vorhaben v1.2.11[R]. Köln-Porz:DLR, 2003.
[58] 钟兢军, 王会社, 刘慧娟, 等. 吸力面翼刀控制压气机叶栅二次流的实验研究[J]. 航空动力学报, 2002, 17(2):188-191. ZHONG J J, WANG H S, LIU H J, et al. The experimental investigation of using suction surface fences to control secondary flow in compressor cascade[J]. Journal of Aerospace Power, 2002, 17(2):188-191(in Chinese).
[59] 刘艳明, 钟兢军, 李海滨, 等. 不同长度端壁翼刀对压气机叶栅二次流影响的数值研究[J]. 航空动力学报, 2004, 19(5):765-769. LIU Y M, ZHONG J J, LI H B, et al. The influence of endwall wing fence length on secondary flow in compressor cascade[J]. Journal of Aerospace Power, 2004, 19(5):765-769(in Chinese).
[60] 田夫, 钟兢军, 孟丽艳. 不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究[J]. 航空动力学报, 2005, 20(4):613-618. TIAN F, ZHONG J J, MENG L Y. Experimental investigation of the affect of endwall fence location on compressor cascade loss[J]. Journal of Aerospace Power, 2005, 20(4):613-618(in Chinese).
[61] 刘艳明, 钟兢军, 王保国, 等. 具有不同翼刀的压气机叶栅二次流结构分析[J]. 航空动力学报, 2008, 23(7):1240-1245. LIU Y M, ZHONG J J, WANG B G, et al. Analysis of secondary flow structures of compressor cascade with different fences[J]. Journal of Aerospace Power, 2008, 23(7):1240-1245(in Chinese).
[62] 杨凌, 钟兢军, 严红明. 压气机环形叶栅中应用吸力面翼刀的数值研究[J]. 工程热物理学报, 2010, 31(6):938-942. YANG L, ZHONG J J, YAN H M. Numerical investigation of annual compressor cascade with suction surface fences[J]. Journal of Engineering Thermophysics, 2010, 31(6):938-942(in Chinese).
[63] 田夫, 钟兢军. 压气机叶栅内不同高度端壁翼刀的实验[J]. 航空动力学报, 2010, 25(4):861-867. TIAN F, ZHONG J J. Experimental investigation on endwall fences with different height in compressor cascade[J]. Journal of Aerospace Power, 2010, 25(4):861-867(in Chinese).
[64] 刘艳明, 钟兢军, 李海滨, 等. 不同长度端壁翼刀对压气机叶栅二次流影响的数值研究[J]. 航空动力学报, 2004, 19(5):666-670. LIU Y M, ZHONG J J, LI H B, et al. Numerical investigation of the secondary flow control in an annual compressor of transonic cascade with different length endwall fences[J]. Journal of Aerospace Power, 2004, 19(5):660-670(in Chinese).
[65] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences, 2002, 38(4-5):389-420.
[66] HIRT S, ZAMAN K, BENCIC T. Experimental study of boundary layer flow control using an array of ramp-shaped vortex generators:AIAA-2012-0741[R]. Reston, VA:AIAA, 2012.
[67] JOUBERT G, PAPE A L, HEINE B, et al. Vortical interactions behind deployable vortex generator for airfoil static stall control[J]. AIAA Journal, 2013, 51(1):240-252.
[68] ANDERSON B, TINAPPLE J, SURBER L. Optimal control of shock wave turbulent boundary layer interactions using micro-array actuation:AIAA-2006-3197[R]. Reston, VA:AIAA, 2006.
[69] BRENT J A. Single stage experimental evaluation of compressor blading with slots and vortex generators, part v-final report:NASA CR-72793[R]. Washington, D.C.:NASA, 1970.
[70] GAMERDINGER P M, SHREEVE R P. The effects of low-profile vortex generators on flow in a transonic fan-blade cascade:AIAA-1996-0250[R]. Reston, VA:AIAA, 1996.
[71] CHIMA R V. Computational modeling of vortex generators for turbomachinery:GT2002-30677[R]. New York:ASME, 2002.
[72] MEYER R, BECHERT D W, HAGE W. Secondary flow control on compressor blades to improve the performance of axial turbomachines[C]//Proceedings of 5th European conference on turbomachineryfluid dynamics and thermodynamics. Florence:European Turbomachinery Society, 2003:1-8.
[73] HERGT A, MEYER R, ENGEL K. The capability of influencing secondary flow in compressor cascades by means of passive and active methods[C]//Proceedings of 1st CEAS European Air and Space Conference. Brussels:DLR, 2007:1-10.
[74] HERGT A, MEYER R, MüLLER M W, et al. Loss reduction in compressor cascades by means of passive flow control:GT2008-50357[R]. New York:ASME, 2008.
[75] 袁忻, 刘火星. 压气机叶栅的涡发生器流动控制研究[J]. 航空科学技术, 2010(4):30-32. YUAN X, LIU H X. Flow control research in compressor cascade with vortex generator[J]. Aeronautical Science & Technology, 2010(4):30-32(in Chinese).
[76] 吴培根, 王如根, 郭飞飞, 等. 涡流发生器对高负荷扩压叶栅性能影响的机理分析[J]. 推进技术, 2016, 37(1):49-56. WU P G, WANG R G, GUO F F, et al. Mechanism analysis of effects of vortex generator on high-load compressor cascade[J]. Journal of Propulsion Technology, 2016, 37(1):49-56(in Chinese).
[77] DORFNER C, HERGT A, NICKE E, et al. Advanced non-axisymmetric endwall contouring for axial compressors by generating an aerodynamic separator-Part I:Principal cascade design and compressor application[J]. Journal of Turbomachinery, 2011, 133(2011):113-120.
[78] HERGT A, DORFNER C, STEINERT W, et al. Advanced non-axisymmetric endwall contouring for axial compressors by generating an aerodynamic separator-Part Ⅱ:Experimental and numerical cascade investigation[J]. Journal of Turbomachinery, 2009, 133(2011):121-131.
[79] REISING S, SCHIFFER H P. Non-axisymmetric end wall profiling in transonic compressors-Part I:Improving the static pressure recovery at off-design conditions by sequential hub and shroud end wall profiling:GT2009-59133[R]. New York:ASME, 2009.
[80] REISING S, SCHIFFER H P. Non-axisymmetric endwall profiling in transonic compressors. Part Ⅱ:Design study of a transonic compressor rotor using non-axisymmetric endwalls-optimization strategies and performance:GT2009-59134[R]. New York:ASME, 2009.
[81] HU S Z, LU X G, ZHANG H W, et al. Numerical investigation of a high-subsonic axial-flow compressor rotor with non-axisymmetric hub endwall[J]. Journal of Thermal Science, 2010, 19(1):14-20.
[82] CHU W L, LI X J, WU Y H, et al. Reduction of endwall loss in axial compressor by using non-axisymmetric profiled endwall:a new design approach based on endwall velocity modification[J]. Aerospace Science & Technology, 2016, 55(2016):76-91.
[83] WALLIS R A. The use of air jets for boundary layer control:Rept. 110[R]. Melbourne:Aeronautical Research Labs Melbourne, 1952.
[84] SCHOLZ P, CASPER M, ORTMANNS J, et al. Leading-edge separation control by means of pulsed vortex generator jets[J]. AIAA Journal, 2008, 46(4):837-846.
[85] SHUN S, AHMED N A. Airfoil separation control using multiple-orifice air-jet vortex generators[J]. Journal of Aircraft, 2011, 48(6):2164-2169.
[86] PRINCE S A, KHODAGOLIAN V. Low-speed static stall suppression using steady and pulsed air-jet vortex generators[J]. AIAA Journal, 2011, 49(3):642-654.
[87] SONDERGAARD R, RIVIR R B, BONS J P. Control of low-pressure turbine separation using vortex-generator jets[J]. Journal of Propulsion and Power, 2002, 18(4):889-895.
[88] VOLINO R J, IBRAHIM M B. Separation control on high lift low-pressure turbine airfoils using pulsed vortex generator jets[J]. Applied Thermal Engineering, 2012, 49(4):31-40.
[89] EVANS S, COULL J, HANEEF I, et al. Minimizing the loss produced by a turbulent separation using vortex generator jets[J]. AIAA Journal, 2012, 50(4):778-787.
[90] EVANS S, HODSON H. Separation-control mechanisms of steady and pulsed vortex-generator jets[J]. Journal of Propulsion and Power, 2012, 28(6):1201-1213.
[91] FENG Y Y, SONG Y P, CHEN F, et al. Effect of endwall vortex generator jets on flow separation control in a linear compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(12):2221-2230.
[92] FENG Y Y, SONG Y P, CHEN F, et al. Active flow separation control using endwall vortex generator jets in highly loaded compressor cascades:GT2015-42268[R]. New York:ASME, 2015.
[93] 李龙婷, 宋彦萍, 刘华坪, 等. 射流式旋涡发生器对弯曲扩压叶栅流场的影响[J]. 航空动力学报, 2015, 30(11):2658-2665. LI L T, SONG Y P, LIU H P, et al. Effects of vortex generator jet on the flow of bowed compressor cascades[J]. Journal of Aerospace Power, 2015, 30(11):2658-2665.
[94] 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报, 2015, 36(2):381-405. WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2):381-405(in Chinese).
[95] POST M L, Corke T C. Separation control on high angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11):2177-2184.
[96] HUANG J, CORKE T C, THOMAS F O. Unsteady plasma actuators for separation control of low-pressure turbine blades[J]. AIAA Journal, 2006, 44(7):1477-1487.
[97] MARKS C R, SONDERGAARD R, WOLFF M, et al. Experimental comparison of DBD plasma actuators for low Reynolds number separation control[J]. Journal of Turbomachinery, 2013, 135(1):011024.
[98] WU Y, LI Y H, ZHU J Q, et al. Experimental investigation of a subsonic compressor with plasma actuation treated casing:AIAA-2007-3849[R]. Reston, VA:AIAA, 2007.
[99] LI Y H, WU Y, ZHOU M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids, 2010, 48(6):1015-1023.
[100] WU Y, ZHAO X H, LI Y H, et al. Corner separation control in a highly loaded compressor cascade using plasma aerodynamic actuation:GT2012-69196[R]. New York:ASME, 2012.
[101] AKCAYOZ E, VO H D, MAHALLATI A. Controlling corner stall separation with plasma actuators in a compressor cascade[J]. Journal of Turbomachinery, 2016, 138(8):081008.
[102] PEACOCK R E. Boundary layer suction to elimanate corner separation:NACA-RM-3663[R]. Washington, D.C.:NACA, 1965.
[103] GBADEBO S A, CUMPSTY N A, HYNES T P. Control of three-dimensional separations in axial compressors by tailored boundary layer suction[J]. Journal of Turbomachinery, 2008, 130(1):125-128.
[104] GMELIN C, THIELE F, LIESNER K, et al. Investigations of secondary flow suction in a high speed compressor cascade:GT2011-46479[R]. New York:ASME, 2011.
[105] 陈萍萍, 乔渭阳, KARSTEN L, 等. 边界层吸气对压气机叶栅角区分离损失的控制[J]. 航空学报, 2014, 35(11):3000-3011. CHEN P P, QIAO W Y, KARSTEN L, et al. Boundary layer suction on hub-corner separation loss in a linear compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3000-3011(in Chinese).
[106] ZHANG L X, CHEN S W, XU H, et al. Effect of boundary layer suction on aerodynamic performance of high-turning compressor cascade:GT2013-94907[R]. New York:ASME, 2013.
[107] MIKOLAJCZAK A A, WEINGOLD H D, NIKKANEN J P. Flow through cascades of slotted compressor blades[J]. Journal of Engineering for Gas Turbines & Power, 1970, 92(1):57-64.
[108] FOTTNER L. Theoretical and experimental investigations on aerodynamically highly-loaded compressor bladings with boundary layer control[C]//Proceedings of 4th International Symposium on Air Breathing Engines. Reston, VA:AIAA, 1980:259-268.
[109] STURM W, SCHEUGENPFLUG H, FOTTNER L. Performance improvements of compressor cascades by controlling the profile and sidewall boundary layers[J]. Journal of Turbomachinery, 1992, 114(3):477-486.
[110] NERGER D, SAATHOFF H, RADESPIEL R, et al. Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade[J]. Journal of Turbomachinery, 2010, 134(2):255-267.
[111] HECKLAU M, WIEDERHOLD O, ZANDER V, et al. Active separation control with pulsed jets in a critically loaded compressor cascade[J]. AIAA Journal, 2013, 49(49):1729-1739.
[112] GMELIN C, ZANDER V, HECKLAU M, et al. Active flow control concepts on a highly loaded subsonic compressor cascade:résumé of experimental and numerical results[J]. Journal of Turbomachinery, 2012, 134(6):061021.
[113] 刘艳明, 关朝斌, 孙拓, 等. 合成射流激励对压气机叶栅气动性能的影响[J]. 工程热物理学报, 2011, 32(5):750-754. LIU Y M, GUAN C B, SUN T, et al. The investigation of aerodynamic characteristics in compressor cascade with synthetic jet excitation[J]. Journal of Engineering Thermophysics, 2011, 32(5):750-754(in Chinese).
[114] TIAN S M, WU Y, ZHANG Z B, et al. Experimental study and vortex analysis in a linear compressor cascade with active flow control:GT2016-57276[R]. New York:ASME, 2016. |