[1] PENNER J E. Aviation and the global atmosphere:A special report of IPCC Working Groups I and Ⅲ in collaboration with the Scientific Assessment Panel to the Montreal Protocol on Substances that Deplete the Ozone Layer[M]. Cambridge:Cambridge University Press, 1999:18-20.
[2] FAN A. An assessment of environmental impacts of a NextGen implementation scenario and its implications on policy-making[D]. Cambridge:Massachusetts Institute of Technology, 2010:54-55.
[3] 闫国华, 吴鹏. 飞机完整航线二氧化碳排放量估算[J]. 装备制造技术, 2013(8):29-31. YAN G H, WU P. The aircraft the complete routes CO2 emissions estimate[J]. Equipment Manufacturing Technology, 2013(8):29-31(in Chinese).
[4] WUEBBLES D J, YANG H, HERMAN R. Climate metrics and aviation:Analysis of current understanding and uncertainties:Technical Report Theme 8[R]. Washington, D.C.:FAA Aviation Climate Change Research Initiative (ACCRI), 2008.
[5] HOUGHTON J T, JENKINS G J, EPHRAUMS J J. Climate change:The IPCC scientific assessment[M]. Cambridge:Cambridge University Press, 1990:364-366.
[6] SMITH S J, WIGLEY M L. Global warming potentials:1. Climatic implications of emissions reductions[J]. Climatic Change, 2000, 44(4):445-457.
[7] BERNTSEN T K, FUGLESTVEDT J S, JOSHI M M, et al. Response of climate to regional emissions of ozone precursors:Sensitivities and warming potentials[J]. Tellus Series B:Chemical & Physical Meteorology, 2005, 57B:283-304.
[8] SHINE K P, FUGLESTVEDT J S, HAILEMARIAM K, et al. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases[J]. Climatic Change, 2005, 68(3):281-302.
[9] LEE D S, FAHEY D W, FORSTER P M, et al. Aviation and global climate change in the 21st century[J]. Atmospheric Environment, 2009, 43(22-23):3520-3537.
[10] FUGLESTVEDT J S, SHINE K P, BERNTSEN T, et al. Transport impacts on atmosphere and climate:Metrics[J]. Atmospheric Environment, 2010, 44(37):4648-4677.
[11] LIM L, LEE D S, SAUSEN R, et al. Quantifying the effects of aviation on radiative forcing and temperature with a climate response model[C]//Proceedings of the TAC-Conference. Oxford:TAC, 2007:202-207.
[12] SAUSEN R, SCHUMANN U. Estimates of the climate response to aircraft CO2 and NOx emissions scenarios[J]. Climatic Change, 2000, 44(1-2):27-58.
[13] MARAIS K, LUKACHKO S P, JUN M, et al. Assessing the impact of aviation on climate[J]. Meteorologische Zeitschrift, 2008, 17(2):157-172.
[14] GREWE V, STENKE A. AirClim:An efficient tool for climate evaluation of aircraft technology[J]. Atmospheric Chemistry & Physics, 2008, 8(16):4621-4639.
[15] PONATER M, PECHTL S, SAUSEN R, et al. Potential of the cryoplane technology to reduce aircraft climate impact:A state-of-the-art assessment[J]. Atmospheric Environment, 2006, 40(36):6928-6944.
[16] ANTOINE N E, KROO I M. Framework for aircraft conceptual design and environmental performance studies[J]. AIAA Journal, 2005, 43(10):2100-2109.
[17] HENDERSON R P, MARTINS J R R A, PEREZ R E. Aircraft conceptual design for optimal environmental performance[J]. Aeronautical Journal, 2012, 116(1175):1-22.
[18] 王宇, 张帅. 面向客机概念设计的污染气体排放量估算方法[J]. 南京航空航天大学学报, 2013, 45(5):708-714. WANG Y, ZHANG S. Estimation method of pollutant gas emissions for civil jet conceptual design[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(5):708-714(in Chinese).
[19] WANG Y, YIN H, ZHANG S, et al. Multi-objective optimization of aircraft design for emission and cost reductions[J]. Chinese Journal of Aeronautics, 2014, 27(1):52-58.
[20] 王如华, 尹贵鲁, 何景武, 等. 快速CFD计算工具在民机概念优化设计中的应用[J]. 飞机设计, 2012(5):31-35. WANG R H, YIN G L, HE J W, et al. Fast CFD tool for civil aircraft conceptual design and optimization use[J]. Aircraft Design, 2012(5):31-35(in Chinese).
[21] 巨龙, 白俊强, 孙智伟, 等. 客机机翼环量分布的气动/结构一体化设计[J]. 航空学报, 2013, 34(12):2725-2732. JU L, BAI J Q, SUN Z W, et al. Integrated aero-structure design of circulation distribution for commercial aircraft wing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12):2725-2732(in Chinese).
[22] BAUGHCUM S L, TRITZ T G, HENDERSON S C, et al. Scheduled civil aircraft emission inventories for 1992:Database development and analysis:NASA Contractor Report 4700[R]. Washington, D.C.:NASA, 1996.
[23] ISIKVEREN A T. Quasi-analytical modelling and optimisation techniques for transport aircraft design[D]. Stockholm:Royal Institute of Technology, 2002:105-108.
[24] DALLARA S E. Aircraft design for reduced climate impact[D]. Palo Alto, CA:Stanford University, 2011:1-20.
[25] MORRELL P, LU C. The environmental cost implication of hub-hub versus hub by-pass flight networks[J]. Transportation Research Part D:Transport & Environment, 2007, 12(3):143-157.
[26] JOOS F, PRENTICE I C, SITCH S, et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios[J]. Global Biogeochemical Cycles, 2001, 15(4):891-907.
[27] BOUCHER O, REDDY M S. Climate trade-off between black carbon and carbon dioxide emissions[J]. Energy Policy, 2008, 36(1):193-200.
[28] SAUSEN R, ISAKSEN I, GREWE V, et al. Aviation radiative forcing in 2000:An update on IPCC (1999)[J]. Meteorologische Zeitschrift, 2005, 14(4):555-561.
[29] STORDAL F, MYHRE G, STORDAL E J G, et al. Is there a trend in cirrus cloud cover due to aircraft traffic?[J]. Atmospheric Chemistry & Physics, 2005, 5(4):2155-2162.
[30] KOEHLER M O, RADEL G, DESSENS O, et al. Impact of perturbations to nitrogen oxide emissions from global aviation[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D11):3078-3078.
[31] RADEL G, SHINE K P. Radiative forcing by persistent contrails and its dependence on cruise altitudes[J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D7):1829-1836.
[32] GREWE V, STENKE A, PONATER M, et al. Climate impact of supersonic air traffic:An approach to optimize a potential future supersonic fleet-Results from the EU-project SCENIC[J]. Atmospheric Chemistry and Physics, 2007, 7(19):5129-5145.
[33] 廖琳雪, 叶叶沛, 党铁红. 欧洲市场直接运营成本(DOC)分析方法及其应用[J]. 民用飞机设计与研究, 2013(1):1-4. LIAO L X, YE Y P, DANG T H. The method and application of the DOC analysis in European market[J]. Civil Aircraft Design and Research, 2013(1):1-4(in Chinese).
[34] FORSTER P, FRECKLETON R S, SHINE K P. On aspects of the concept of radiative forcing[J]. Climate Dynamics, 1997, 13(7-8):547-560.
[35] FICHTER C. Climate impact of air traffic emissions in dependency of the emission location and altitude[D]. Manchester:Manchester Metropolitan University, 2009:25-26.
[36] GIERENS K M, LING L, ELEFTHERATOS K, et al. A review of various strategies for contrail avoidance[J]. Open Atmospheric Science Journal, 2008, 2(1):1-7.
[37] JENSEN L, HANSMAN R J, VENUTI J, et al. Commercial airline speed optimization strategies for reduced cruise fuel consumption[C]//Aviation Technology, Integration, and Operations Conference. Reston:AIAA, 2013:4289-4302.
[38] CRAMER E J, DENNIS J J, FRANK P D, et al. Problem formulation for multidisciplinary optimization[J]. SIAM Journal on Optimization, 1994, 4(4):754-776.
[39] 王宇. 基于不确定性的优化方法及其在飞机设计中的应用[D]. 南京:南京航空航天大学, 2010:19-20. WANG Y. Uncertainty-based optimization method and its application in aircraft design[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:19-20(in Chinese).
[40] 丁松滨. 飞行性能与飞行计划[M]. 北京:科学出版社, 2013:93-96. DING S B. Flight performance and flight plan[M]. Beijing:Science Press, 2013:93-96(in Chinese). |