[1] Strasky J, Janecek M, Harcuba P, et al. The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(8): 1955-1962.[2] Zhang Y P, Sun G B, Zhang A Z. Effect of abrasive particle ultrasonic vibration on surface quality of titanium alloy TC4 in EDM[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 204-209. (in Chinese) 张云鹏, 孙广标, 张安洲. 超声磨料对TC4钛合金电火花加工表面质量的影响[J]. 航空学报, 2010, 31(1): 204-209.[3] Zheng M L, Fan Y H. An overview of tool friction and wear behavior in high-speed machining-typical difficult-to-cut material[J]. Journal of Harbin University of Science and Technology, 2011, 16(6): 22-30. (in Chinese) 郑敏利, 范依航. 高速切削典型难加工材料刀具摩擦与磨损机理研究现状[J]. 哈尔滨理工大学学报, 2011, 16(6): 22-30.[4] Kao J Y, Tsao C C, Wang S S, et al. Optimization of the EDM parameters on machining Ti-6Al-4V with multiple quality characteristics[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(1-4): 395-402.[5] Mohammed B N, Khan A A, Mohammad Y A. Surface modification of titanium alloy through electrical discharge machining (EDM)[J]. International Journal of Mechanical and Materials Engineering (IJMME), 2011, 6(3): 380-384.[6] Chen L H, Liu Z D, Qiu M B, et al. Technical research of combined machining of TC4 titanium alloy by EDM induced controllable combustion and turning dressing[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2626-2634. (in Chinese) 陈龙海, 刘志东, 邱明波, 等. TC4钛合金电火花诱导可控烧蚀复合车削技术研究[J]. 航空学报, 2013, 34(11): 2626-2634.[7] Hascalik A, Caydas U. Electrical discharge machining of titanium alloy (Ti-6Al-4V)[J]. Applied Surface Science, 2007, 253(22): 9007-9016.[8] Norliana M A, Solomon D G, Bahari M F. A review on current research trends in electrical discharge machining (EDM)[J]. International Journal of Machine Tools and Manufacture, 2007, 47(7-8): 1214-1228.[9] Chow H, Yan B, Huang F, et al. Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining[J]. Journal of Materials Processing Technology, 2000, 101(1-3): 95-103.[10] Kunieda M, Furuoya S, Taniguchi N. Improvement of EDM efficiency by supplying oxygen gas into gap[J]. CIRP Annals-Manufacturing Technology, 1991, 40(1): 215-218.[11] Yang K. Study of electrical discharge milling in jetted mist[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese) 杨凯. 喷雾电火花铣削加工技术研究[D]. 上海: 上海交通大学, 2012.[12] Wang X Z, Liu Z D, Xue R Y, et al. Research on self-mixed oxygen in discharge gap to improve the processing characteristics of titanium alloy electrical discharge machining[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2419-2426. (in Chinese) 王祥志, 刘志东, 薛荣媛, 等. 极间自混氧改善钛合金电火花加工特性研究[J]. 航空学报, 2013, 34(10): 2419-2426.[13] Liu Z D, Tian Z J, Wang X Z, et al. Electrical discharge machining ablation method for titanium or titanium alloy processing: China, ZL201010544351.0[P]. 2011-02-18. (in Chinese) 刘志东, 田宗军, 王祥志, 等. 钛或钛合金电火花诱导可控燃爆蚀除加工方法: 中国, ZL201010544351.0[P]. 2011-02-18.[14] Frank-Kamenetskii D A. Diffusion and heat transfer in chemical kinetics[M]. Moscow: Nauka, 1983: 10-12. (in Russian)[15] Liang G F. High-speed oxygen cutting method[M]. Beijing: China Machine Press, 1975: 15-16. (in Chinese) 梁桂芳. 高速氧气切割法[M]. 北京: 机械工业出版社, 1975: 15-16.[16] Davies H J. Modern fluid dynamics: compressible flow[M]. New York: Van Nostrand Reinhold, 1971: 243-256.[17] Qiu M B, Liu Z D, Tian Z J, et al. Study of unidirectional conductivity on the electrical discharge machining of semiconductor crystals[J]. Precision Engineering, 2013, 37(4): 902-907. |