[1] Suresh S. Fatigue of structures and materials[M]. Wang Zhongguang, translated. Beijing: National Defense Industry Press, 1999: 99-102. (in Chinese) Suresh S. 材料的疲劳[M]. 王中光, 译. 北京: 国防工业出版社, 1999: 99-102.[2] Hu Y J. Analysis on cracks of turbine blades in an aero-engine and application of laser shock peening to superalloy. Xi'an: Engineering College, Air Force Engineering University, 2010. (in Chinese) 胡雅骥. 某型发动机涡轮叶片故障分析与激光冲击强化可行性研究. 西安: 空军工程大学工程学院, 2010.[3] Li W. Mechanism and key technology research on laser shock processing of steel blades. Xi'an: Engineering College, Air Force Engineering University, 2010. (in Chinese) 李伟. 钢制叶片激光冲击强化原理与关键技术研究. 西安: 空军工程大学工程学院, 2010.[4] Tang Y, Zhang X J, Wu X R. Analysis of residual stresses and three dimensional stress intensity factors for shot peened single-edge-notch-tension specimens[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(7): 1265-1274. (in Chinese) 汤英, 张晓晶, 吴学仁. 单边缺口拉伸试样喷丸强化残余应力及其三维应力强度因子分析[J]. 航空学报, 2012, 33(7): 1265-1274.[5] Wang M X, Chen G N, Peng Q. Influence of shot peening on tension-tension fatigue property of laser aided forming aluminum alloy samples[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1351-1356. (in Chinese) 王明星, 陈光南, 彭青. 喷丸对激光辅助成形铝合金样件拉-拉疲劳性能的影响[J]. 航空学报, 2011, 32(7): 1351-1356.[6] Lindemann J, Buque C, Appel F. Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy[J]. Acta Materialia, 2006, 54(4): 1155-1164.[7] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Laser Apply, 1998, 10(6): 265-279.[8] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminum alloys: Application to high cycle fatigue behavior[J]. Materials Science and Engineering A, 1996, 210: 102-113.[9] Ren X D, Jiang D W, Zhang Y K, et al. Estimation of fatigue safe lives of 7050-T7451 aluminum alloy samples [J]. Journal of Aerospace Power, 2011, 26(1): 185-190. (in Chinese) 任旭东, 姜大伟, 张永康, 等. 7050-T7451 铝合金试件的疲劳安全寿命估算[J]. 航空动力学报, 2011, 26(1): 185-190.[10] McCay M H, Hopkins J A. Laser surface processing of compressor blades for erosive environments, AIAA-2002-1300.Reston: AIAA, 2002.[11] Michael J S. Laser shock processing induced residual compression for improved damage tolerant design. Dayton: School of Engineering, University of Dayton, 2004.[12] Fabbro R, Foumier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Applied Physics, 1990, 68(2): 775-784.[13] Wang J, Zhou S K, Tan Y S. Application of laser shock processing on turbine engines[J]. Applied Laser, 2005, 25(1): 32-34. (in Chinese) 王健, 邹世坤, 谭永生. 激光冲击处理技术在发动机上的应用[J]. 应用激光, 2005, 25(1): 32-34.[14] Lu J, Ni X W, He A Z. Physics of laser and material interaction[M]. Beijing: China Machine Press, 1996: 80-89. (in Chinese) 陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京: 机械工业出版社, 1996: 80-89.[15] Sun C W. Effect of laser radiation[M]. Beijing: National Defense Industry Press, 2002: 30-42. (in Chinese) 孙承伟. 激光辐照效应[M]. 北京: 国防工业出版社, 2002: 30-42.[16] Guo D H, Wu H X, Wang S B, et al. Mechanism of laser shock peening[J]. Science in China: Series E, 1999, 29(3): 222-226. (in Chinese) 郭大浩, 吴鸿兴, 王声波, 等.激光冲击强化机理研究[J]. 中国科学: E辑, 1999, 29(3): 222-226.[17] Wang L L. Foundation of stress wave[M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 65-76. (in Chinese) 王礼立. 应力波基础[M]. 第2版. 北京: 国防工业出版社, 2005: 65-76.[18] Zhang Q M, Liu Y, Huang F L, et al. Dynamic behavior of materials[M]. Beijing:National Defense Industry Press, 2006: 320-326. (in Chinese) 张庆明, 刘彦, 黄风雷, 等. 材料的动力学行为[M]. 北京: 国防工业出版社, 2006: 320-326.[19] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 1995, 27(12): 1213-1229.[20] Tan H. Introduction to experimental shock-wave physics[M]. Beijing: National Defense Industry Press, 2007: 156-161. (in Chinese) 谭华. 实验冲击波的物理导引[M]. 北京:国防工业出版社,2007: 156-161.[21] Hei W F, Li Y H, Li Q P, et al. Experiment research on laser shock peening of Ni-based superalloy[J]. Chinese Journal of Laser, 2010, 37(7): 1898-1902. (in Chinese) 何卫锋, 李应红, 李启鹏, 等. 涡轮叶片榫槽部位激光冲击强化试验研究[J]. 中国激光, 2010, 37(7):1898-1902.[22] Hu Y X. Research on the numerical simulation and impact effects of laser shock processing. Shanghai: School of Mechanical Engineering, Shanghai Jiao Tong University, 2008. (in Chinese) 胡永祥. 激光冲击处理工艺过程数值建模与冲击效应研究. 上海: 上海交通大学机械工程学院, 2008.[23] Sun R J, Yan X J. New characteristics of fatigue-creep tests on serration of turbine blades[J]. Journal of Aerospace Power, 2007, 22(3): 419-424. (in Chinese) 孙瑞杰, 闫晓军. 涡轮叶片榫齿部位疲劳/蠕变试验的新特点[J]. 航空动力学报, 2007, 22(3): 419-424.[24] Charles S M, Tao W, Lin Y, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036.[25] Breuer D. Vacuum/surface treatment laser peening-advanced residual stress technology[J]. Industrial Heating, 2007, 74(1): 48-50.[26] Wyman Z Z, Gary R H. Investigation of residual stress relaxation under cyclic load[J]. International Journal of Fatigue, 2001, 23(S1): 31-37.[27] Zhong Z, Sagar B, Gokul R, et al. Thermal relaxation of residual stress in laser shock peened Ti-6Al-4V alloy[J]. Surface & Coatings Technology, 2012, 206(22): 4619-4627.[28] Zhou L C, Li Y H, He W F, et al. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering A, 2013, 578: 181-186.[29] Prevéy P S, Cammett J T. The effect of shot peening coverage on residual stress, cold work and fatigue in a Ni-Cr-Mo low alloy steel//Proceedings International Conference on Shot Peening. 2002.[30] Zhang X. Fatigue short through-thickness crack closure and growth in the residual stress field [J]. Journal of Mechanical Strength, 2000, 22(2): 137-139. (in Chinese) 张雪. 疲劳短裂纹在残余应力场中的闭合和扩展[J].机械强度, 2000, 22(2): 137-139. |