[1] Selig M S, Guglielmo J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72-79.
[2] Ran J H, Liu Z Q, Bai P. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamic Sinica, 2008, 26(2): 178-185. (in Chinese) 冉景洪, 刘子强, 白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报, 2008, 26(2): 178-185.
[3] Wang S, Mi J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 41-48.(in Chinese) 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1): 41-48.
[4] Chen N Q. A numerical simulation of unsteady separated flow around a circular cylinder at suction boundary conditions[J]. Acta Aerodynamic Sinica, 1994, 12(3): 287-294. (in Chinese) 陈南茜. 吸气条件对圆柱非定常分离流影响的数值研究[J]. 空气动力学学报, 1994, 12(3): 287-294.
[5] Bai P, Zhou W J, Wang Y Y. Investigation of effect of suction on delta wing separation flow at high angle-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(5): 393-398. (in Chinese) 白鹏, 周伟江, 汪翼云. 三角翼大攻角分离流开缝吸气效应研究[J]. 航空学报, 1999, 20(5): 393-398.
[6] Owens D B, Perkins J N. Improved performance on highly swept wings by suction boundary-layer control, AIAA-1996-0431[R]. Reston: AIAA, 1996.
[7] Fournier G, Pellerin S, Phuoc L T. Control by suction of an incompressible flow past a circular cylinder: comparison between experimental and LES results, AIAA-2004-2119[R]. Reston: AIAA, 2004.
[8] Genc S M, Kaynak U. Control of flow separation and transition point over an airfoil at low Reynolds number using simultaneous blowing and suction, AIAA-2009-3672[R]. Reston: AIAA, 2009.
[9] Wahidi R, Bridges D H. Effects of distributed suction on an airfoil at low Reynolds number, AIAA-2010-4714[R]. Reston: AIAA, 2010.
[10] Ohtake T, Nakae Y, Motohashi Y. Nonlinearity of the aerodynamic characteristics of NACA0012 aerofoil at low Reynolds numbers[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2007, 55(644): 439-445.
[11] Ying Z F, Chen Z H, Fan B C, et al. Large eddy simulation of 3-D square channel flow around wall-mounted rectangle cylinder[J]. Journal of Nanjing University of Science and Technology: Natural Science, 2008, 32(2): 154-159. (in Chinese) 应展烽, 陈志华, 范宝春, 等. 三维方管中柱体可压绕流的大涡模拟[J]. 南京理工大学学报: 自然科学版, 2008, 32(2): 154-159.
[12] Boudet J, Caro J, Jacob M C. Large eddy simulation of a single airfoil tip-clearance flow[R]. AIAA-2010-3978, 2010.
[13] Liou M S. A sequel to AUSM, Part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.
[14] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[15] Rango S D, Zingg D W. Implicit Navier-Stokes computations of unsteady flows using sub-iteration methods, AIAA-1996-2088[R]. Reston: AIAA, 1996.
[16] Xu H Y, Pollard A. Large eddy simulation of turbulent flow in a square annular duct[J]. Physics of Fluids, 2001, 13(11): 3321-3337.
[17] Saeed T I, Graham W R, Babinsky H, et al. Boundary-layer suction system design for application to a laminar flying wing aircraft, AIAA-2010-4379[R]. Reston: AIAA, 2010.
[18] Bridges D H. Early flight test and other boundary layer research at Mississippi State 1949-1960[J]. Journal of Aircraft, 2007, 44(5): 1635-1652. |