[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014. [2] DANDOIS J. Improvement of corner flow prediction using the quadratic constitutive relation[J]. AIAA Journal, 2014, 52(12):2795-2806. [3] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857(in Chinese). [4] SPALART P R. Philosophies and fallacies in turbulence modeling[J]. Progress in Aerospace Sciences, 2015, 74:1-15. [5] DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50:77-103. [6] CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1):38-54. [7] LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3):537-566. [8] SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure-strain correlation of turbulence:An invariant dynamical systems approach[J]. Journal of Fluid Mechanics, 1991, 227:245-272. [9] CÉCORA R D, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics:AIAA-2012-0465[R]. Reston:AIAA, 2012. [10] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [11] LEE-RAUSCH E M, RUMSEY C L, TOGITI V K, et al. Application of a full Reynolds stress model to high lift flows:AIAA-2016-3944[R]. Reston:AIAA, 2016. [12] EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5):1524-1541. [13] APETREI R M, CURIEL-SOSA J L, QIN N. Using the Reynolds stress model to predict shock-induced separation on transport aircraft[J]. Journal of Aircraft, 2018, 56(2):583-590. [14] LANDA T, KLUG L, RADESPIEL R, et al. Experimental and numerical analysis of a streamwise vortex downstream of a delta wing[J]. AIAA Journal, 2020, 58(7):2857-2868. [15] 聂胜阳, 高正红, 黄江涛. 微分雷诺应力模型在激波分离流中的应用[J]. 空气动力学学报, 2012, 30(1):52-56. NIE S Y, GAO Z H, HUANG J T. Differential Reynolds stress model for shock & separated flow[J]. Acta Aerodynamica Sinica, 2012, 30(1):52-56(in Chinese). [16] 董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报, 2016, 38(4):46-53. DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology, 2016, 38(4):46-53(in Chinese). [17] 王圣业, 王光学, 董义道, 等. 基于雷诺应力模型的高精度分离涡模拟方法[J]. 物理学报, 2017, 66(18):184701. WANG S Y, WANG G X, DONG Y D, et al. High-order detached-eddy simulation method based on a Reynolds-stress background model[J]. Acta Physica Sinica, 2017, 66(18):184701(in Chinese). [18] TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model:AIAA-2015-2925[R]. Reston:AIAA, 2015. [19] WILCOX D C. Turbulence modeling for CFD[M]. 3rd edition. LOS Angeles:DCW Industries, 2002. [20] ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift fur Physik, 1951, 129(6):547-572. [21] LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models:AIAA-2011-3978[R]. Reston:AIAA, 2011. [22] COLES D, WADCOCK A J. Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift[J]. AIAA Journal, 1979, 17(4):321-329. [23] NASA Langley Research Center. Turbulence modeling resource[EB/OL]. (2021-07-26)[2021-09-15]. https://turbmodels.larc.nasa.gov. [24] SCHMITT V. Pressure distributions on the ONERA M6-wing at transonic Mach numbers, experimental data base for computer program assessment:AGARD AR-138[R]. Brussels:AGARD, 1979. [25] BABISKY H, HARVEY J K. 激波边界层干扰[M]. 白菡尘, 译. 北京:国防工业出版社, 2015:5. BABISKY H, HARVEY J K. Shock wave-boundary-layer interactions[M].BAI H C, translated. Beijing:National Defense Industry Press, 2015:5(in Chinese). [26] RUMSEY C L, VATSA V N. Comparison of the predictive capabilities of several turbulence models[J]. Journal of Aircraft, 1995, 32(3):510-514. [27] DARGAHI B. The turbulent flow field around a circular cylinder[J]. Experiments in Fluids, 1989, 8(1):1-12. [28] APSLEY D, LESCHZINER M. Investigation of advanced turbulence models for the flow in a generic wing-body junction[J]. Flow, Turbulence and Combustion, 2001, 67(1):25-55. [29] RUMSEY C L, LEE H C, PULLIAM T H. Reynolds-averaged Navier-Stokes computations of the NASA juncture flow model using FUN3D and OVERFLOW:AIAA-2020-1304[R]. Reston:AIAA, 2020. [30] BK HAZARIKA, R RAJ. Three-dimensional fluid flow phenomena in the blade end wall corner region[J]. International Journal of Turbo and Jet Engines, 1989, 6(3-4):311-326. [31] NASA Langley Research Center. AIAA Drag Prediction Workshop[EB/OL]. (2021-07-26)[2021-09-15]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw. [32] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263. [33] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31. |