航空学报 > 2022, Vol. 43 Issue (11): 526385-526385   doi: 10.7527/S1000-6893.2021.26385

典型航空分离流动的雷诺应力模型数值模拟

舒博文1,2, 杜一鸣3, 高正红1, 夏露1, 陈树生1,4   

  1. 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 空天技术研究所, 绵阳 621000;
    3. 沈阳航空航天大学 航空宇航学院, 沈阳 110000;
    4. 航空工业第一飞机设计研究院, 西安 710089
  • 收稿日期:2021-09-15 修回日期:2021-11-18 出版日期:2022-11-15 发布日期:2021-12-24
  • 通讯作者: 陈树生,E-mail:sshengchen@nwpu.edu.cn E-mail:sshengchen@nwpu.edu.cn

Numerical simulation of Reynolds stress model of typical aerospace separated flow

SHU Bowen1,2, DU Yiming3, GAO Zhenghong1, XIA Lu1, CHEN Shusheng1,4   

  1. 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Shenyang Aerospace University, Shenyang 110000, China;
    4. AVIC The First Aircraft Institute, Xi'an 710089, China
  • Received:2021-09-15 Revised:2021-11-18 Online:2022-11-15 Published:2021-12-24

摘要: 先进飞行器设计对CFD方法的边界层分离模拟能力提出了更高要求,传统雷诺平均纳维-斯托克斯(RANS)涡黏性模型因建模和构造层面的理论缺陷导致其分离流动预测可信度较低。雷诺应力模型由于未对雷诺应力及其分量关系进行建模,对湍流非平衡、旋转以及雷诺应力各向异性等流动现象具有天然的理论优势。为验证与确认雷诺应力模型对典型航空分离流动的预测能力,基于SSG/LRR-g模型,以NACA4412翼型大攻角分离、M6机翼跨声速分离以及F6翼身结合区分离流动为例,探讨了雷诺应力模型对逆压梯度、激波诱导分离、二次流动分离等典型航空分离流动预测的适应性。通过与k-ω剪应力输运(SST)模型模拟结果对比发现,雷诺应力模型对分离泡大小、速度型分布、雷诺应力分布和激波位置等关键特征的模拟精度较涡黏性模型显著提升,基本验证了雷诺应力模型可在翼身接合区角区流动和三维强激波诱导分离等问题中得到正确的流动特征,而SST模型在此类流动中基本失效,显示了雷诺应力模型在典型航空分离流动中较涡黏模型的优势。同时,发现k-ω SST模型所包含的Bradshaw假设在三维激波诱导分离较强时严重影响了模型预测的准确性,是预测结果偏离试验的主要原因。此外,还基于计算结果与模型构造提出了雷诺应力模型以及涡黏性模型可能的改进方向。

关键词: 湍流模型, 分离流动, 雷诺应力模型, 涡黏性模型, 激波诱导分离, 二次流动

Abstract: Advanced aircraft design puts forward higher requirements for the boundary layer separation simulation capability of the CFD method. The traditional Reynolds Averaged Navier-Stokes equations (RANS) vortex viscosity model has a low reliability of separation flow prediction due to theoretical defects in modeling and structural level. Because the Reynolds stress model does not model the Reynolds stress and its component relationships, it has natural theoretical advantages in turbulent non-equilibrium, rotation, and Reynolds stress anisotropy. To verify and confirm the prediction ability of the Reynolds stress model for typical aviation separation flows, based on the SSG/LRR-g model, cases of the NACA4412 airfoil high angle of attack separation, M6 wing transonic separation and F6 wing body junction zone separation flow are analyzed. The adaptability of the Reynolds stress model to the prediction of typical aviation separation flow such as reverse pressure gradient, shock-induced separation, and secondary flow separation is discussed. A comparison of the simulation result with that of the k-ω Shear Stress Transport (SST) model finds that the Reynolds stress model significantly improves the simulation accuracy for key features such as separation bubble size, velocity distribution, Reynolds stress distribution, and shock wave position compared to the eddy viscosity model, which basically verifies the advantage of the Reynolds stress model. The model can obtain the correct flow characteristics in the corner flow of the wing body junction area and the three-dimensional strong shock induced separation. However, the SST model basically fails in this type of flow, showing that the Reynolds stress model is more turbulent in the typical aviation separated flow.It is also found that the Bradshaw hypothesis contained in the k-ω SST model severely affects the accuracy of the model's prediction when the three-dimensional shock induced separation is strong, which is the main reason for the deviation of the prediction results from the experiment. In addition, the Reynolds stress model and the possible improvement directions of the eddy viscosity model are proposed based on the calculation results and model structure.

Key words: turbulence model, separated flow, Reynolds stress model, eddy viscosity model, shock induced separation, secondary flow

中图分类号: