[1] 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1):41-48. WANG S, MI J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):41-48(in Chinese). [2] HUANG R, LIN C. Vortex shedding and shear-layer instability of a cantilever wing at low Reynolds numbers[C]//33rd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1995:589. [3] ALAM M M, ZHOU Y, YANG H X, et al. The ultra-low Reynolds number airfoil wake[J]. Experiments in Fluids, 2010, 48(1):81-103. [4] AKBARI M H, PRICE S J. Simulation of dynamic stall for a NACA 0012 airfoil using a vortex method[J]. Journal of Fluids and Structures, 2003, 17(6):855-874. [5] HOFFMANN J A. Effects of freestream turbulence on the performance characteristics of an airfoil[J]. AIAA Journal, 1991, 29(9):1353-1354. [6] 叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4):524736. YE S R, ZHANG Z, WANG Y W, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524736(in Chinese). [7] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689. KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese). [8] 张洪军, 吕进. 多普勒全场测速技术的进展[J]. 力学进展, 2007, 37(3):428-442. ZHANG H J, LV J. The progress of the Doppler global velocimetry[J]. Advances in Mechanics, 2007, 37(3):428-442(in Chinese). [9] HUNT J M. A three-dimensional particle tracking velocimetry system for the evaluation of large eddy simulation turbulence models[D]. Seattle:University of Washington, 2016:21-52. [10] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4):524779. WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524779(in Chinese). [11] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:Applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524686(in Chinese). [12] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [13] MAULIK R, SAN O, JACOB J D, et al. Sub-grid scale model classification and blending through deep learning[J]. Journal of Fluid Mechanics, 2019, 870:784-812. [14] REN F, WANG C L, TANG H. Active control of vortex-induced vibration of a circular cylinder using machine learning[J]. Physics of Fluids, 2019, 31(9):093601. [15] HUANG J Q, LIU H C, CAI W W. Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning[J]. Journal of Fluid Mechanics, 2019, 875:R2. [16] MURATA T, FUKAMI K, FUKAGATA K. Nonlinear mode decomposition with convolutional neural networks for fluid dynamics[J]. Journal of Fluid Mechanics, 2020, 882:A13. [17] OMATA N, SHIRAYAMA S. A novel method of low-dimensional representation for temporal behavior of flow fields using deep autoencoder[J]. AIP Advances, 2019, 9(1):015006. [18] FUKAMI K, NAKAMURA T, FUKAGATA K. Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data[DB/OL]. arXiv preprint:2006.06977, 2020. [19] 战庆亮, 葛耀君, 白春锦. 基于尾流时程目标识别的流场参数选择研究[J]. 力学学报, 2021, 53(10):2692-2702. ZHAN Q L, GE Y J, BAI C J. Study on flow field parameters of wake time history target recognition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10):2692-2702(in Chinese). [20] 战庆亮, 葛耀君, 白春锦. 流场特征识别的无量纲时程深度学习方法[J]. 工程力学, (2021-11-18)[2021-12-02]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2021.08.0638. ZHANQ L, GE Y J, BAI C J. Deep learning for flow feature recognition based on dimensionless time history[J]. Engineering Mechanics, (2021-11-18)[2021-1202]. http://engineeringmechanics.cn/cn/article/doi/10.6052/j.issn.1000-4750.2021.08.0638(in Chinese). [21] MUELLER T J, DELAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35:89-111. [22] 战庆亮, 周志勇, 葛耀君. Re=3900圆柱绕流的三维大涡模拟[J]. 哈尔滨工业大学学报, 2015, 47(12):75-79. ZHAN Q L, ZHOU Z Y, GE Y J. 3-Dimensional large eddy simulation of circular cylinder at Re=3900[J]. Journal of Harbin Institute of Technology, 2015, 47(12):75-79(in Chinese). [23] 王庶. 低雷诺数下NACA 0012翼型空气动力学特性[D]. 北京:北京大学, 2010. WANG S. Aerodynamic characteristics of NACA 0012 airfoil at low Reynolds number[D]. Peking:Peking University, 2010(in Chinese). [24] 吴鋆, 王晋军, 李天. NACA0012翼型低雷诺数绕流的实验研究[J]. 实验流体力学, 2013, 27(6):32-38. WU J, WANG J J, LI T. Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(6):32-38(in Chinese). |