[1] MOIN P, MAHESH K. DIRECT NUMERICAL SIMULATION: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578. [2] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 163-194. [3] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158(in Chinese). [4] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054(in Chinese). [5] 孙东, 刘朋欣, 沈鹏飞, 等. 马赫6 柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(6): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124681(in Chinese). [6] MARTÍN M P, WEIRS V G, CANDLER G V. DNS of reacting hypersonic turbulent boundary layer[C]//29th AIAA Fluid Dynamics Conference. Reston: AIAA, 1998. [7] PIN M, CANDLER G. DNS of a Mach 4 boundary layer with chemical reactions[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. [8] MARTÍN M, CANDLER G. Temperature fluctuation scaling in reacting boundary layers[C]//15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001. [9] MARTÍN M P. Exploratory study of turbulence/chemistry interaction in hypersonic flows[C]//36th AIAA Thermophysics Conference. Reston: AIAA, 2011. [10] DUAN L, MARTÍN M P. Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers[C]//47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009. [11] DUAN L, MARTÍN M P. Procedure to validate direct numerical simulations of wall-bounded turbulence including finite-rate reactions[J]. AIAA Journal, 2009, 47(1): 244-251. [12] DUAN L, MARTÍN P. Study of turbulence-chemistry interaction in hypersonic turbulent boundary layers[C]//20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011. [13] DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59. [14] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792. [15] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA-TM-101528[R]. Washington, D.C.: NASA, 1990. [16] LEHR H F. Experiments on shock-induced combustion[J]. Aeronautica Acta, 1972, 17: 589-597. [17] 刘君, 董海波, 刘瑜. 化学非平衡流动解耦算法的回顾与新进展[J]. 航空学报, 2018, 39(1): 021090. LIU J, DONG H B, LIU Y. Review and recent advances in uncoupled algorithms for chemical non-equilibrium flows[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021090(in Chinese). [18] 刘朋欣. 旋转爆震复杂流场的高精度数值模拟与机理分析[D]. 北京: 军事科学院, 2018: 43-51. LIU P X. High-order numerical simulation and mechanism study of complex flow in rotating detonation[D]. Beijing: Academy of Military Sciences PLA China, 2018: 43-51(in Chinese). [19] LI Q, LIU P X, ZHANG H X. Further investigations on the interface instability between fresh injections and burnt products in 2-D rotating detonation[J]. Computers & Fluids, 2018, 170: 261-272. [20] LIU P X, LI Q, HUANG Z F, et al. Interpretation of wake instability at slip line in rotating detonation[J]. International Journal of Computational Fluid Dynamics, 2018, 32(8-9): 379-394. [21] LIU P X, GUO Q L, SUN D, et al. Wall effect on the flow structures of three-dimensional rotating detonation wave[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29546-29559. [22] KNIGHT D, LONGO J, DRIKAKIS D, et al. Assessment of CFD capability for prediction of hypersonic shock interactions[J]. Progress in Aerospace Sciences, 2012, 48-49: 8-26. [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. [24] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143. [25] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445. [26] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231. [27] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011. [28] TIKHOMIROV V M. Local structure of turbulence in an incompressible viscous fluid at very large Reynolds numbers[M]//Selected Works of A.N.Kolmogorov. Dordrecht: Springer Netherlands, 1991: 312-318. [29] KOLMOGOROV A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. Journal of Fluid Mechanics, 1962, 13(1): 82-85. [30] BENZI R, CILIBERTO S, TRIPICCIONE R, et al. Extended self-similarity in turbulent flows[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1993, 48(1): R29-R32. [31] SHE Z, LEVEQUE E. Universal scaling laws in fully developed turbulence[J]. Physical Review Letters, 1994, 72(3): 336-339. |