[1] YUE C G, LI J X, HOU X, et al. Summarization on variable liquid thrust rocket engines[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2918-2923. [2] CASIANO M J, HULKA J R, YANG V. Liquid-propellant rocket engine throttling: A comprehensive review[J]. Journal of Propulsion and Power, 2010, 26(5): 897-923. [3] DRESSLER G. Summary of deep throttling rocket engines with emphasis on Apollo LMDE[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2006. [4] CUI P, XU W W, LI Q L. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3[J]. Acta Astronautica, 2018, 142: 162-169. [5] 雷娟萍, 兰晓辉, 章荣军, 等. 嫦娥三号探测器7500 N变推力发动机研制[J]. 中国科学: 技术科学, 2014, 44(6): 569-575. LEI J P, LAN X H, ZHANG R J,et al. The development of 7500 N variable thrust engine for Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 569-575(in Chinese). [6] GIULIANO V, LEONARD T, LYDA R, et al. CECE: expanding the envelope of deep throttling in liquid oxygen/liquid hydrogen rocket engines for NASA exploration missions[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010. [7] GROMSKI J, MAJAMAKI A, CHIANESE S, et al. Northrop grumman TR202 LOX/GH2 deep throttling engine project status[C]//46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010. [8] MOREHEAD R. Project Morpheus main engine development and preliminary flight testing[C]//47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. [9] MELCHER J C, MOREHEAD R L. Combustion stability characteristics of the project Morpheus liquid oxygen/liquid methane main engine[C]//50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2014. [10] JOHNSSON G, BIGERT M. Development of small centrifugal pumps for an electric propellant pump system[J]. Acta Astronautica, 1990, 21(6-7): 429-438. [11] 翟一帆. 膨胀循环发动机推力调节过程动态仿真研究[D]. 北京: 中国航天科技集团公司第一研究院, 2017. ZHAI Y F. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: The First Academy of China Aerospace Science and Technology Corporation, 2017(in Chinese). [12] LEONARDI M, NASUTI F, DI MATTEO F, et al. A methodology to study the possible occurrence of chugging in liquid rocket engines during transient start-up[J]. Acta Astronautica, 2017, 139: 344-356. [13] 李锦江. 一种低温发动机系统动态仿真的快捷方法[J]. 导弹与航天运载技术, 2012(1): 13-17. LI J J. An available technique for dynamic simulation of cryogenic rocket engines[J]. Missiles and Space Vehicles,2012(1): 13-17(in Chinese). [14] 陈宏玉, 刘红军. 补燃循环发动机推力调节过程建模与仿真研究[J]. 火箭推进, 2014, 40(1): 18-24. CHEN H Y, LIU H J. Modeling and simulations on the thrust regulation process of staged combustion cycle rocket engine[J]. Journal of Rocket Propulsion, 2014, 40(1): 18-24(in Chinese). [15] 李莹, 潘宏亮, 秦飞, 等. 基于EASY5的液发系统建模与仿真可行性研究[J]. 火箭推进, 2015, 41(1): 70-75. LI Y, PAN H L, QIN F,et al. Feasibility study on EASY5-based modeling and simulation of liquid rocket engine[J]. Journal of Rocket Propulsion, 2015, 41(1): 70-75(in Chinese). [16] 谭永华, 杜飞平, 陈建华, 等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术, 2018, 39(6): 1201-1209. TAN Y H, DU F P, CHEN J H,et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology, 2018, 39(6): 1201-1209(in Chinese). [17] LEE K, CHA J, KO S, et al. Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J]. Acta Astronautica, 2018, 150: 15-27. [18] SOLDÁ N, LENTINI D. Opportunities for a liquid rocket feed system based on electric pumps[J]. Journal of Propulsion and Power, 2008, 24(6): 1340-1346. [19] RACHOV P A P, TACCA H, LENTINI D. Electric feed systems for liquid-propellant rockets[J]. Journal of Propulsion and Power, 2013, 29(5): 1171-1180. [20] 王浩明, 程诚, 李小芳, 等. 液体火箭发动机电动泵系统发展及性能研究[J]. 火箭推进, 2019, 45(5): 1-7. WANG H M, CHENG C, LI X F,et al. Development and performance study of electrically driven pump system for liquid rocket engine[J]. Journal of Rocket Propulsion, 2019, 45(5): 1-7(in Chinese). [21] CUI P, LI Q L, CHENG P, et al. System scheme design for LOX/LCH4 variable thrust liquid rocket engines using motor pump[J]. Acta Astronautica, 2020, 171: 139-150. [22] 刘洋, 付本帅, 杨建刚, 等. 电动泵压式液体火箭发动机系统建模与仿真[J]. 载人航天, 2019, 25(1): 107-115. LIU Y, FU B S, YANG J G,et al. System modeling and simulation of electric pump feed liquid propellant rocket engine[J]. Manned Spaceflight, 2019, 25(1): 107-115(in Chinese). [23] 中国金属学会高温材料分会. 中国高温合金手册(上卷)[M].北京: 中国标准出版社, 2012. Academic Committee of the Superalloys, The Chinese Society for Metals. China superalloys handbook(volume I)[M]. Beijing: Standards Press of China, 2012(in Chinese). [24] 张忠利, 张蒙正, 周立新. 液体火箭发动机热防护[M]. 北京: 国防工业出版社, 2016. ZHANG Z L, ZHANG M Z, ZHOU L X. Liquid rocket engine thermal protection[M]. Beijing: National Defense Industry Press, 2016(in Chinese). [25] Simcenter Amesim 2019.1 Aircraft electrics library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019. [26] Simcenter Amesim 2019.1 Electrical static conversion library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019. [27] Simcenter Amesim 2019.1 Electric motors and drives library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019. [28] Simcenter Amesim 2019.1 Two phase flow library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019. [29] 张育林, 刘昆, 程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社, 2005. ZHANG Y L, LIU K, CHENG M S. Dynamic theory and application of liquid rocket engine[M]. Beijing: Science Press, 2005(in Chinese). [30] 刘上, 刘红军, 陈宏玉. 液体火箭发动机热力组件动力学模型[J]. 宇航学报, 2012, 33(10): 1512-1518. LIU S, LIU H J, CHEN H Y. Dynamics models for the combustor component in liquid rocket engine[J]. Journal of Astronautics, 2012, 33(10):1512-1518(in Chinese). [31] 汪广旭, 郭灿琳, 石晓波, 等. 基于时滞模型的纵向燃烧不稳定性分析[J]. 推进技术, 2016, 37(6): 1129-1135. WANG G X, GUO C L, SHI X B,et al. Analysis of longitudinal combustion instability based on time lag model[J]. Journal of Propulsion Technology, 2016, 37(6): 1129-1135(in Chinese). [32] PÉREZ-ROCA S, MARZAT J, PIET-LAHANIER H, et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences, 2019, 107: 63-84. [33] 汪洪波, 吴海燕, 谭建国. 推进系统动力学[M]. 北京: 科学出版社, 2018. WANG H B, WU H Y, TAN J G. Dynamics of propulsion systems[M]. Beijing: Science Press, 2018(in Chinese). [34] LEONARDI M, MATTEO F D, STEELANT J, et al. System analysis of low frequency combustion instabilities in liquid rocket engines[C]//51 st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015. [35] 许少聪. 液氧液甲烷姿轨控动力系统动态特性仿真研究[D]. 长沙: 国防科技大学, 2016. XU S C. Numerical analysis on dynamic characteristics of LOx/LCH4 space propulsion system for attitude and orbit control[D]. Changsha: National University of Defense Technology, 2016(in Chinese). [36] Simcenter Amesim 2019.1 Liquid propulsion library user’s guide[M]. Brenau: Siemens Industry Software NV, 2019. [37] HUANG D H, HUZEL D K. Modern engineering for design of liquid-propellant rocket engines[M]. Reston: AIAA, 1992. [38] GNIELINSKI V. New equations for heat and mass-transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-368. [39] SHAH M M. General correlation for heat transfer during two-component gas-liquid flow in horizontal pipes[C]//Proceedings of ASME 2018 International Mechanical Engineering Congress and Exposition. New York: ASME, 2019. [40] 曾文, 李海霞, 马洪安, 等. RP-3航空煤油模拟替代燃料的化学反应详细机理[J]. 航空动力学报, 2014, 29(12): 2810-2816. ZENG W, LI H X, MA H A, et al. Detailed chemical reaction mechanism of surrogate fuel for RP-3 kerosene[J]. Journal of Aerospace Power, 2014, 29(12): 2810-2816(in Chinese). [41] 吴海龙, 聂万胜, 郑直, 等. 超临界环境两组分煤油替代物液滴的蒸发特性[J]. 导弹与航天运载技术, 2019(1): 54-58. WU H L, NIE W S, ZHENG Z,et al. Evaporation characteristic of bicomponent surrogate fuel for kerosene droplet in supercritical environment[J]. Missiles and Space Vehicles, 2019(1): 54-58(in Chinese). |