[1] |
LEVY D W, ZICKUHR T. Data summary from the first AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
|
[2] |
LAFLIN K R, KLAUSMEYER S M. Data summary from second AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
|
[3] |
VASSBERG J C, TINOCO E N. Abridged summary of the third AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
|
[4] |
VASSBERG J C, TINOCO E N. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
|
[5] |
LEVY D W, LAFLIN K R. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
|
[6] |
TINOCOL E N, BRODERSEN O P. Summary of data from the sixth AIAA CFD drag prediction workshop:AIAA-2017-1208[R]. Reston, VA:AIAA, 2017.
|
[7] |
RUMSEY C L, ALLISON D O. CFD sensitivity analysis of a modern civil transport near buffet-onset conditions:NASA TM-2001-211263[R]. Washington, D.C.:NASA, 2001.
|
[8] |
王运涛. DPW IV~DPW VI数值模拟技术综述[J].航空学报,2018,39(4):021836. WANG Y T. An overview of DPW IV-DPW VI numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021836(in Chinese).
|
[9] |
王运涛,孟德虹. CRM-WB风洞模型高阶精度数值模拟[J].航空学报,2018,39(4):121642. WANG Y T, MENG D H. High-order numerical simulation of CRM-WB wind tunnel method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):121642(in Chinese).
|
[10] |
李伟,孟德虹.网格拓扑对DLR-F6构型数值模拟的影响[J].航空学报,2017,38(2):120177. LI W, MENG D H. Effect of mesh topology on numerical simulation of DLR-F6 configuration[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):120177(in Chinese).
|
[11] |
张培红,张耀冰.面向混合网格高精度阻力预测的梯度求解方法[J].航空学报, 2018, 39(1):121415. ZHANG P H, ZHANG Y B. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121415(in Chinese).
|
[12] |
张培红,张耀冰.面向混合网格高精度阻力预测的熵修正方法[J].航空学报, 2018, 39(9):122019. ZHANG P H, ZHANG Y B. Entropy correction method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122019(in Chinese).
|
[13] |
VASSBERG J C, DEHAAN M A. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
|
[14] |
RIVERS M, DITTBERNER A. Experimental investigations of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
|
[15] |
RIVERS M, DITTBERNER A. Experimental investigations of the NASA common research model in the NASA Langley National Transonic Facility and NASA Ames 11-Ft transonic wind tunnel:AIAA-2011-1126[R]. Reston, VA:AIAA, 2011.
|
[16] |
European Commission. European strategic wind tunnels improved research potential[EB/OL].(2014-10-30)[2016-11-23]. http://www.eswirp.aero/.
|
[17] |
CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
|
[18] |
DISKIN B, THOMAS J L. Comparison of node-centered and cell-centered unstructured finite volume discretizations:Inviscid fluxes[J]. AIAA Journal, 2011, 49(4):836-854.
|
[19] |
MAVRIPLIS D J. Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes:AIAA-2003-3986[R]. Reston, VA:AIAA, 2003.
|
[20] |
ROE P L. Approximate Riemann solvers[J]. Journal of Computational Physics,1981, 135(2):250-258.
|
[21] |
KIM K H, KIM C, RHO O H. Accurate computations of hypersonic flows using AUSMPW+scheme and shock aligned grid technique:AIAA-1998-2442[R]. Reston, VA:AIAA, 1998.
|
[22] |
TRAMEL R W, NICHOLS R H. Addition of improved shock-capturing schemes to OVERFLOW 2.1:AIAA-2009-3988[R]. Reston, VA:AIAA, 2009.
|
[23] |
SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows:AIAA-1992-0439[R]. Reston, VA:AIAA, 1992.
|
[24] |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
|
[25] |
SPALART P R. Strategies for turbulence modelling and simulation[J]. International Journal of Heat and Fluid Flow, 2000, 21:252-263.
|
[26] |
MANI M, BABCOCK D A, WINKLER C M, et al. Predictions of a supersonic turbulent flow in a square duct:AIAA-2013-0860[R]. Reston, VA:AIAA, 2013.
|
[27] |
SCLAFANI A J, VASSBERG J C, RUMSEY C, et al. Drag prediction for the NASA CRM wing/body/tail using CFL3D and OVERFLOW on an overset mesh:AIAA-2010-4219[R]. Reston, VA:AIAA, 2010.
|
[28] |
YAMAMOTO K, TANAKA K, MURAYAMA M. Effect of a nonlinear constitutive relation for turbulence modeling on predicting flow separation at wing-body juncture of transonic commercial aircraft:AIAA-2012-2895[R]. Reston, VA:AIAA, 2012.
|
[29] |
ARTHUR D, VASSILVITSKII S. K-means++:The advantages of careful seeding[M]//SODA'07:Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007:1027-1035.
|
[30] |
田口玄一.试验设计法(上)[M].北京:机械工业出版社,1987. GENICHI T. Experimental design method (part 1)[M]. Beijing:Machinery Industry Press, 1987(in Chinese).
|
[31] |
茆诗松,周纪芗,陈颖主.试验设计[M]. 2版.北京:中国统计出版社,2012. MAO S S, ZHOU J X, CHEN Y Z. Experimental design[M]. 2nd ed. Beijing:China Statistics Press, 2012(in Chinese).
|