[1] WANG R Z, ZHANG X C, GONG J G, et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650℃ based on cycle-by-cycle concept[J]. International Journal of Fatigue, 2017, 97:114-123. [2] WANG R Z, ZHANG X C, TU S T, et al. The effects of inhomogeneous microstructure and loading waveform on creep-fatigue behavior in a forged and precipitation hardened nickel-based superalloy[J]. International Journal of Fatigue, 2017, 97:190-201. [3] ZHU S P, YANG Y J, HUANG H Z, et al. A unified criterion for fatigue-creep life prediction of high temperature components[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2017, 231(4):677-688. [4] 詹志新, 佟阳, 李彬恺, 等. 考虑冲击缺陷的钛合金板的疲劳寿命预估[J]. 航空学报, 2016, 37(7):2200-2207. ZHAN Z X, TONG Y, LI B K, et al. Fatigue life prediction of titanium plate considering impact defect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2200-2207(in Chinese). [5] HU D, MENG F, LIU H, et al. Experimental investigation of fatigue crack growth behavior of GH2036 under combined high and low cycle fatigue[J]. International Journal of Fatigue, 2016, 85:1-10. [6] KERMANPUR A, SEPEHRI AMIN H, ZIAEI-RAD S, et al. Failure analysis of Ti6Al4V gas turbine compressor blades[J]. Engineering Failure Analysis, 2008, 15(8):1052-1064. [7] GOLDEN P J, CALCATERRA J R. A fracture mechanics life prediction methodology applied to dovetail fretting[J]. Tribology International, 2006, 39(10):1172-1180. [8] CHEN L, LIU Y, XIE L. Power-exponent function model for low-cycle fatigue life prediction and its applications--Part Ⅱ:Life prediction of turbine blades under creep-fatigue interaction[J]. International Journal of Fatigue, 2007, 29(1):10-19. [9] 荆甫雷, 王荣桥, 胡殿印, 等. 单晶高温疲劳损伤参量的选取与寿命建模[J]. 航空学报, 2016, 37(9):2749-2756. JING F L, WANG R Q, HU D Y, et al. Damage parameter determination and life modeling for high temperature fatigue of single crystals[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2749-2756(in Chinese). [10] 王荣桥, 荆甫雷, 胡殿印. 基于临界平面的镍基单晶高温合金疲劳寿命预测模型[J]. 航空动力学报, 2013, 28(11):2587-2592. WANG R Q, JING F L, HU D Y. Fatigue life prediction model based on critical plane of nickel-based single crystal superalloy[J]. Journal of Aeronautical Power, 2013, 28(11):2587-2592(in Chinese). [11] FATEMI A, SOCIE D F. A critical plane to multiaxial fatigue damage including out-of-phase loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 1988, 11(3):149-165. [12] WANG C H, BROWN M W. A path-independent parameter for fatigue under proportional and non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(12):1285-1298. [13] WANG C H, BROWN M W. Multiaxial random load fatigue:Life prediction techniques and experiments[C]//Proceedings of the Fourth International Conference on Biaxial/Multiaxial Fatigue, 1994:367-380. [14] SMITH R N, WATSON P, TOPPER T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5:767-778. [15] KANDIL F A, BROWN M W, MILLER K J. Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures[M]//Mechanical Behavior and Nuclear Applications of Stainless Steel at Elevated Temperatures. Pittsburgh, PA:Metals Society, 1982:46-103. [16] ZHONG B, WANG Y R, WEI D S, et al. A new life prediction model for multiaxial fatigue under proportional and non-proportional loading paths based on the pi-plane projection[J]. International Journal of Fatigue, 2017, 102:241-251. [17] ALBINMOUSA J, JAHED H. Multiaxial effects on LCF behavior and fatigue failure of AZ31B magnesium extrusion[J]. International Journal of Fatigue, 2014, 67:103-116. [18] BABAEI S, GHASEMI-GHALEBAHMAN A, HAJIGHORBANI R. A fatigue model for sensitive materials to non-proportional loadings[J]. International Journal of Fatigue, 2015, 80:266-277. [19] JIANG Y, SEHITOGLU H. Fatigue and stress analysis of rolling contact[R]. Urbana-Champaign:College of Engineering, University of Illinois at Urbana-Champaign, 1992. [20] GATES N R, FATEMI A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis[J]. International Journal of Fatigue, 2017, 100:322-336. [21] ZHU S P, LEI Q, WANG Q Y. Mean stress and ratcheting corrections in fatigue life prediction of metals[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(9):1343-1354. [22] ZHU S P, LEI Q, HUANG H Z, et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals[J]. International Journal of Damage Mechanics, 2017, 26(8):1219-1241. [23] 吴志荣, 胡绪腾, 宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. 机械工程学报, 2013, 49(2):59-66. WU Z R, HU X T, SONG Y D. Multi-axial fatigue life prediction model based on maximum shear strain amplitude and modified SWT parameter[J]. Journal of Mechanical Engineering, 2013, 49(2):59-66(in Chinese). [24] 李静, 孙强, 李春旺, 等. 多轴载荷下缺口试件疲劳寿命预测研究[J]. 固体力学学报, 2011, 32(1):37-42. LI J, SUN Q, LI C W, et al. Fatigue life prediction for notched specimen under multiaxial loading[J]. Acta Mechanica Solida Sinica, 2011, 32(1):37-42(in Chinese). [25] INCE A, GLINKA G. A generalized fatigue damage parameter for multiaxial fatigue life prediction under proportional and non-proportional loadings[J]. International Journal of Fatigue, 2014, 62:34-41. [26] YU Z Y, ZHU S P, LIU Q. A new energy-critical plane damage parameter for multiaxial fatigue life prediction of turbine blades[J]. Materials, 2017, 10(5):513. [27] 吴志荣. 钛合金多轴疲劳寿命预测方法研究[D]. 南京:南京航空航天大学, 2014:15-46. WU Z R. Research on multi-axial fatigue life prediction method for titanium alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014:15-46(in Chinese). [28] 颜鸣皋. 中国航空材料手册. 第二卷:高温合金[S]. 北京:中国标准出版社, 2002. YAN M G. Handbook of aeronautical materials in China:Second volume:Superalloys[S]. Beijing:Standards Press of China, 2002(in Chinese). [29] SUN G Q, SHANG D G, BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue, 2010, 32(7):1108-1115. [30] ZHU S P, FOLETTI S, BERETTA S. Probabilistic framework for multiaxial LCF assessment under material variability[J]. International Journal of Fatigue, 2017, 103:371-385. [31] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302. [32] SINCLAIR G B, CORMIER N G, et al. Contact stresses in dovetail attachments:Finite element modeling[J]. Journal of Engineering for Gas Turbines & Power, 2002, 124(1):182-189. [33] MAKTOUF W, AMMAR K, NACEUR I B, et al. Multiaxial high-cycle fatigue criteria and life prediction:Application to gas turbine blade[J]. International Journal of Fatigue, 2016, 92:25-35. |