[1] ASME. ASME boiler and pressure vessel code, Section III, Division 1, Subsection NH, Class 1 Components in elevated temperature service[S]. New York:ASME, 2009. [2] DOGAN B, AINSWORTH R. Defect assessment procedure for low to high temperature range[C]//Proceedings of ASME 2003 Pressure Vessels and Piping Conference. New York:ASME, 2008:105-111. [3] ZHU S P, LEI Q, HUANG H Z, et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals[J]. International Journal of Damage Mechanics, 2017, 26(8):1219-1241. [4] WANG R Z, ZHANG X C, TU S T, et al. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue, 2016, 90:12-22. [5] DUNNE F P E. Fatigue crack nucleation:Mechanistic modelling across the length scales[J]. Current Opinion in Solid State and Materials Science, 2014, 18(4):170-179. [6] SANGID M D. The physics of fatigue crack initiation[J]. International Journal of Fatigue, 2013, 57:58-72. [7] WEN J F, SRIVASTAVA A, BENZERGA A, et al. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading[J]. Journal of the Mechanics and Physics of Solids, 2017, 108:68-84. [8] WANG R Z, GUO S J, CHEN H F, et al. Multi-axial creep-fatigue life prediction considering history-dependent damage evolution:A new numerical procedure and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2019, 131:313-336. [9] RCC-MR. Design and construction rules for mechanical components of FBR nuclear islands[S]. Paris:AFCEN, 2002. [10] MANSON S S. A simple procedure for estimating high-temperature low-cycle fatigue[J]. Experimental Mechanics, 1968, 8(8):349-355. [11] YU Z Y, ZHU S P, LIU Q, et al. Multiaxial fatigue damage parameter and life prediction without any additional material constants[J]. Materials (Basel, Switzerland), 2017, 10(8):923. [12] ROBINSON E L. Effect of temperature variation on the long-time rupture strength of steels[J]. ASME Transactions, 1952:777-781. [13] PRIEST R H, ELLISON E G. A combined deformation map-ductility exhaustion approach to creep-fatigue analysis[J]. Materials Science and Engineering, 1981, 49(1):7-17. [14] SPINDLER M W, PAYTEN W M, SAXENA A, et al. Advanced ductility exhaustion methods for the calculation of creep damage during creep-fatigue cycling[J]. Journal of ASTM International, 2011, 8(7):103806. [15] KANG G Z, KAN Q H. Constitutive modeling for uniaxial time-dependent ratcheting of SS304 stainless steel[J]. Mechanics of Materials, 2007, 39(5):488-499. [16] WEN J F, TU S T, XUAN F Z, et al. Effects of stress level and stress state on creep ductility:evaluation of different models[J]. Journal of Materials Science & Technology, 2016, 32(8):695-704. [17] WANG Y Q, COULES H E, TRUMAN C E, et al. Effect of elastic follow-up and ageing on the creep of an austenitic stainless steel[J]. International Journal of Solids and Structures, 2018, 135:219-232. [18] WEN J F, TU S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210. [19] 姚萍, 王润梓, 郭素娟, 等. GH4169合金蠕变疲劳行为的有限元模拟及寿命预测[J]. 航空学报, 2018, 39(12):422193. YAO P, WANG R Z, GUO S J, et al. Finite elementsimulations of creep-fatigue behavior and life assessment of GH4169 alloy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422193(in Chinese). [20] SUN G Q, SHANG D G, BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue, 2010, 32(7):1108-1115. [21] CHEN G, ZHANG Y, XU D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650℃[J]. Materials Science and Engineering:A, 2016, 655:175-182. [22] ZHU S P, LIU Y H, LIU Q, et al. Strain energy gradient-based LCF life prediction of turbine discs using critical distance concept[J]. International Journal of Fatigue, 2018, 113:33-42. [23] 张智胜. 航空发动机涡轮盘疲劳寿命预测与动态可靠性分析[D]. 成都:电子科技大学, 2014. ZHANG Z S. Life prediction and dynamic reliability analysis of aircraft turbine disc[D]. Chengdu:University of Electronic Science and Technology of China, 2014(in Chinese). [24] 江有为. 某GH4169动力涡轮盘裂纹扩展研究[D]. 杭州:浙江大学, 2016. JIANG Y W. Fatigue crack growth research of a GH4169 power turbine disc[D]. Hangzhou:Zhejiang University, 2016(in Chinese). |