[1] EARL T. Thermal structures for aerospace applications[M]. Reston:AIAA, 1996:5-8.
[2] LEE I, LEE D M, OH L K. Supersonic flutter analysis of stiffened laminated plates subjected to thermal load[J]. Journal of Sound and Vibration, 1999, 234(1):49-67.
[3] BROWN A M. Temperature-dependent modal test analysis correlation of X-34 FASTRAC composite rocket nozzle[J]. Journal of Propulsion and Power, 2002, 18(2):284-288.
[4] CHAKRAVERTY S, PRADHAN K K. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions[J]. Aerospace Science and Technology, 2014, 36:132-156.
[5] FAN Y, WANG H. Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments[J]. Composite Structures, 2015, 124:35-43.
[6] VOSTEEN L F, MCWITHEY R R, THOMSON R G. Effect of transient heating on vibration frequencies of some simple wing structures:NACA TN 4054[R]. Washington, D.C.:NACA, 1955.
[7] VOSTEEN L F, FULLER K E. Behavior of a cantilever plate under rapid-heating conditions:NACA RM L55E20[R]. Washington, D.C.:NACA, 1955.
[8] MCWITHEY R R, VOSTEEN L F. Effects of transient heating on the vibration frequencies of a prototype of the X-15 wing:NACA TN D-362[R]. Washington, D.C.:NACA, 1960.
[9] KEHOE M W, SNYDER H T. Thermoelastic vibration test techniques:NASA TM 101742[R]. Washington, D.C.:NASA, 1991.
[10] SNYDER H T, KEHOE M W. Determination of the effects of heating on modal characteristics of an aluminum plate with application to hypersonic vehicles:NASA TM 4274[R]. Washington, D.C.:NASA, 1991.
[11] NATALIE D S. High-temperature modal survey of a hot-structure control surface[C]//Proceedings of the 27th International Congress of the Aeronautical Sciences. Nice, France:French Society of Aeronautics and Astronautics, 2010, 3:2091-2110.
[12] JEON B H, KANG H W, LEE Y S. Free vibration characteristics of rectangular plate under rapid thermal loading[C]//The 9th International Congress on Thermal Stresses. Budapest:Hungarian Academy of Sciences, 2011.
[13] CHENG H, LI H, ZHANG W, et al. Effects of radiation heating on modal characteristics of panel structures[J]. Journal of Spacecraft and Rockets, 2015, 52(4):1228-1235.
[14] 吴大方, 赵寿根, 潘兵, 等. 高速巡航导弹翼面结构热-振联合试验研究[J]. 航空学报, 2012, 33(9):1633-1642. WU D F, ZHAO S G, PAN B, et al. Research on thermal-vibration joint test for wing structure of high-speed cruise missile[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1633-1642(in Chinese).
[15] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面结构热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7):2225-2235. LIU H, LI X D, YANG W Q, et al. Thermal vibration test on wing structure of high-speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2225-2235(in Chinese).
[16] YU K, YANG K, BAI Y. Experimental investigation on the time-varying modal parameters of a trapezoidal plate in temperature-varying environments by subspace tracking-based method[J]. Journal of Vibration and Control, 2015, 21(6):3305-3319.
[17] 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J]. 力学学报, 2013, 45(4):598-605. WU D F, ZHAO S G, PAN B, et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4):598-605(in Chinese).
[18] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Thermal modal test of composite wing structure in high-temperature environments up to 1100℃ for hypersonic flight vehicles[J]. Acta Materiae Compsitae Sinica, 2015, 32(2):323-331(in Chinese).
[19] WU D F, WU S, WANG Y W, et al. High-speed and accurate non-linear calibration of temperature sensors for transient aerodynamic heating experiments[J]. Transactions of the Institute of Measurement and Control, 2014, 36(6):845-852.
[20] WU D F, WANG Y W, PAN B, et al. Experimental research on the ultimate strength of hard aluminum alloy 2017 subjected to short-time radioactive heating[J]. Materials & Design, 2012, 40:502-509.
[21] ZHENG L M, WU D F, ZHOU A F, et al. Experimental and numerical study on heat transfer characteristics of metallic honeycomb core structure in transient thermal shock environments[J]. International Journal of Thermophysics, 2014, 35(8):1557-1576.
[22] 科恩L. 时-频分析:理论与应用[M]. 白居宪, 译. 西安:西安交通大学出版社, 1998:77-93. COHEN L. Time-frequency analysis:Theory and applications[M]. BAI J X, translated. Xi'an:Xi'an Jiaotong University Press, 1998:77-93(in Chinese).
[23] 《中国航空材料手册》编辑委员会. 中国航空材料手册:第1卷[M]. 2版. 北京:中国标准出版社, 2002:817-826. The Editorial Board of China Aeronautical Material Handbook. China aeronautical material handbook:Vol.1[M]. 2nd ed. Beijing:Standard Press of China, 2002:817-826(in Chinese). |