[1] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Propeller slipstream development:AIAA-2007-3810[R]. Reston:AIAA, 2007.
[2] FERRARO G, KIPOUROS T, SAVILL A. Propeller-wing interaction prediction for early design:AIAA-2014-0564[R]. Reston:AIAA, 2014.
[3] LUGT H J, FLOW V. Introduction to vortex theory[J]. Journal of Fluid Mechanics, 1999, 384(1):375-378.
[4] OKULOV V L. On the stability of multiple helical vortices[J]. Journal of Fluid Mechanics, 2004, 521(15):319-342.
[5] OKULOV V L, SØRENSEN J N. Stability of helical tip vortices in a rotor far wake[J]. Journal of Fluid Mechanics, 2007, 576:1-25.
[6] MUSCARI R, DI MASCIO A, VERZICCO R. Modeling of vortex dynamics in the wake of a marine propeller[J]. Computers & Fluids, 2013, 73(6):65-79.
[7] DI MASCIO A, MUSCARI R, DUBBIOSO G. On the wake dynamics of a propeller operating in drift[J]. Journal of Fluid Mechanics, 2014, 754(9):263-307.
[8] FELLI M, CAMUSSI R, DI FELICE F. Mechanisms of evolution of the propeller wake in the transition and far fields[J]. Journal of Fluid Mechanics, 2011, 682(3):5-53.
[9] BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace science & Technology, 2003, 7(6):465-472.
[10] STVERMER A W. Unsteady CFD simulation of propeller installation effects:AIAA-2006-4969[R]. Restion:AIAA, 2006.
[11] ROOSENBOOM E, HEIDER A, SCHRÖDER A. Investigation of the propeller slipstream with particle image velocimetry[J]. Journal of Aircraft, 2009, 46(2):442-449.
[12] XU H Y, YE Z, SHI A. Numerical study of prepoller slipstream based on unstructured overset grids[J]. Journal of Aircraft, 2012, 49(2):384-389.
[13] 李博, 梁德旺, 黄国平. 基于等效盘模型的滑流对涡桨飞机气动性能的影响[J]. 航空学报, 2008, 29(4):849-852. LI B, LIANG D W, HUANG G P. Propeller slipstream effects on aerodynamic performance of turbo-prop airplane based on equivalent actuator disk model[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4):849-852(in Chinese).
[14] 夏贞锋, 杨永. 螺旋桨滑流与机翼气动干扰的非定常数值模拟[J]. 航空学报, 2011, 32(7):1195-1201. XIA Z F, YANG Y. Unsteady numerical simulation of interaction effects of propeller and wing[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1195-1201(in Chinese).
[15] 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报, 2015, 30(6):1366-1373. QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6):1366-1373(in Chinese).
[16] 杨帆,杨永. 短舱及离散精度对螺旋桨桨叶载荷分布的影响[J]. 航空计算技术, 2012, 42(2):24-26. YANG F, YANG Y. Influence of nacelle and discrete precision on propeller blade load distribution[J]. Aeronautical Computing Technique, 2012, 42(2):24-26(in Chinese).
[17] 段中喆, 刘沛清, 屈秋林. 某轻载螺旋桨滑流区三维流场特性数值研究[J]. 控制工程, 2012, 19(5):836-840. DUAN Z Z, LIU P Q, QU Q L. Numerical research on 3-D flow field characteristics within the slipstream of a low loaded propeller[J]. Control Engineering of China, 2012, 19(5):836-840(in Chinese).
[18] SHUR M L, SPALART P R, STRELETS M, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[19] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41(1):181-202.
[20] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//Liu C, Liu Z. Advances in DNS/LES. Louisisiama:Greyden Press, Louisiana Tech University, 1997:137-148.
[21] SPALART P R, DECK S, SHUR M L, et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195.
[22] 应业炬. 船舶快速性[M]. 北京:人民交通出版社, 2007:405-424. YING Y J. Ship speed and resistance[M]. Beijing:China Communications Press, 2007:405-424(in Chinese). the propeller wake in the transition and far fields[J].Journal of fluid mechanics, 2011, 682(3):5-53
[20]应业炬.船舶快速性[M]. 北京:人民交通出版社, 2007. |