航空学报 > 2022, Vol. 43 Issue (S2): 23-39   doi: 10.7527/S1000-6893.2022.27705

等离子体激励器对高速翼型升阻特性的影响

孙志坤1, 史志伟1(), 张伟麟1, 李铮2, 孙琪杰1   

  1. 1.南京航空航天大学 航空学院,南京 210016
    2.中国运载火箭技术研究院 空间物理重点实验室,北京 100076
  • 收稿日期:2022-06-29 修回日期:2022-07-29 接受日期:2022-08-03 出版日期:2022-12-25 发布日期:2022-08-08
  • 通讯作者: 史志伟 E-mail:szwam@nuaa.edu.cn
  • 基金资助:
    省部级项目

Effect of plasma actuator on lift-drag characteristics of high-speed airfoil

Zhikun SUN1, Zhiwei SHI1(), Weilin ZHANG1, Zheng LI2, Qijie SUN1   

  1. 1.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
  • Received:2022-06-29 Revised:2022-07-29 Accepted:2022-08-03 Online:2022-12-25 Published:2022-08-08
  • Contact: Zhiwei SHI E-mail:szwam@nuaa.edu.cn
  • Supported by:
    Provincial or Ministry Level Project

摘要:

等离子体激励作为一种响应时间极短的主动流动控制技术而被广泛研究。为考查等离子体合成射流激励器改善高超声速飞行器升阻特性的能力,采用数值模拟方法研究了激励器的空腔、激励器的布置位置、来流迎角以及放电参数对高速翼型气动性能改善效果的影响,并进行了相应的实验验证。结果表明:激励器自身的空腔会产生减阻效果,并且空腔的时均减阻效果优于等离子体激励器的时均减阻效果。激励器越靠近翼型的前缘点,翼型气动性能提升越强。高超声速翼型前缘斜劈区,是激励器进行翼型气动性能改善的最佳几何位置。当激励器在最佳几何位置处时,来流迎角的增加会降低激励器空腔对翼型气动性能产生的负面影响,但也会对激励器时均流动控制性能产生削弱作用。此外,为提高激励器的能量利用效率,以翼型气动性能提升的效果作为衡量,研究了不同放电参数对等离子体激励器改善翼型气动性能的影响,并得到激励器提升高超声速翼型升阻特性时的最优占空比为1.83%。研究结果为等离子体合成射流激励器进行高超声速流动控制提供了参考。

关键词: 高超声速飞行器, 等离子体激励器, 气动性能, 占空比, 最优解

Abstract:

Plasma excitation is widely studied as an active flow control technology with a short response time. Numerical simulations are used to investigate the effects of the actuator cavity, actuator arrangement position, angle of attack, and discharge parameters on improvement in the lift-drag characteristics of hypersonic airfoils. Corresponding experimental validation is conducted. The results show that the cavity of the exciter will generate a drag reduction effect, and the time-average drag reduction effect of the cavity is better than that of the plasma actuator. The decreasing distance of the actuator to the airfoil leading edge leads to stronger improvement in the aerodynamic performance of the airfoil. The hypersonic airfoil leading edge wedge area is the optimum geometric position for the actuator to improve the aerodynamic performance of the airfoil. Increasing the inflow angle of attack reduces the negative effect of the actuator cavity on the airfoil aerodynamic performance when the actuator is in the optimum geometric position, while also impairing the time-average flow control performance of the actuator. In addition, to improve the exciter energy utilization efficiency, the effect of different discharge parameters on the aerodynamic performance improvement of the airfoil is studied. The optimum duty cycle of the plasma synthetic jet exciter for lifting the drag and lift characteristics of hypersonic airfoils is 1.83%. The results provide a reference for the control of hypersonic flow with plasma synthetic jet exciter.

Key words: hypersonic vehicle, plasma actuator, aerodynamic performance, duty cycle, optimal solution

中图分类号: