航空学报 > 2016, Vol. 37 Issue (2): 461-474   doi: 10.7527/S1000-6893.2015.0129

后掠机翼人工转捩最佳粗糙带高度数值预测

田永强1, 张正科1, 屈科2, 翟琪1   

  1. 1. 西北工业大学翼型叶栅空气动力学国家重点实验室, 西安 710072;
    2. 纽约城市大学城市学院土木工程系, 纽约NY 10031, 美国
  • 收稿日期:2015-03-03 修回日期:2015-05-08 出版日期:2016-02-15 发布日期:2015-05-25
  • 通讯作者: 张正科,男,博士,教授,硕士生导师。主要研究方向:计算流体力学。Tel:029-88491224-15,E-mail:zkzhang@nwpu.edu.cn E-mail:zkzhang@nwpu.edu.cn
  • 作者简介:田永强,男,硕士研究生。主要研究方向:计算流体力学。E-mail:nwpuqiangge@mail.nwpu.edu.cn;屈科,男,博士研究生。主要研究方向:计算流体力学,计算海洋动力学。E-mail:kequ00@citymail.cuny.edu翟琪,男,硕士研究生。主要研究方向:计算流体力学,流动控制。E-mail:zhaiqi@mail.nwpu.edu.cn
  • 基金资助:

    国家自然科学基金(JC-201103);航空科学基金(2013ZD53057)

Numerical prediction of optimal height of roughness strip for artificial transition on swept wings

TIAN Yongqiang1, ZHANG Zhengke1, QU Ke2, ZHAI Qi1   

  1. 1. National Key Laboratory of Science and Technology on Aerodynamical Design and Research, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Department of Civil Engineering, City College, The City University of New York, New York NY 10031, USA
  • Received:2015-03-03 Revised:2015-05-08 Online:2016-02-15 Published:2015-05-25
  • Supported by:

    National Natural Science Foundation of China(JC-201103);Aeronautical Science Foundation of China(2013ZD53057)

摘要:

介绍了基于当地变量的γ-Reθ转捩模型,并将该模型应用到后掠机翼的转捩预测和人工转捩最佳粗糙带高度以及人工转捩技术能够模拟的大气飞行雷诺数的确定中。为检验γ-Reθ转捩模型对后掠机翼转捩的预测能力,对ONERA M6机翼和DLR-F4标模机翼进行了边界层转捩预测,采用结构化网格和有限体积法求解雷诺平均Navier-Stokes(RANS)方程,得到了机翼表面的摩擦阻力系数分布,从而可以得到相应的转捩位置,预测得到的转捩位置与试验结果比较吻合,说明该模型对后掠机翼转捩预测是可信的。最后在DLR-F4标模机翼上表面固定了粗糙带,通过相同的方法得到了转捩位置,从而确定了马赫数为0.785、雷诺数为3.0×106时最佳粗糙带高度为0.11 mm;通过不断增大雷诺数使自由转捩位置不断向前缘移动,验证了人工转捩对大气飞行雷诺数的模拟能力。结果表明,在最佳粗糙带高度为0.11 mm下,可以实现对大气飞行高雷诺数的模拟。

关键词: 人工转捩, 粗糙带高度, 转捩模型, 后掠机翼, 雷诺数, 边界层

Abstract:

A brief introduction to γ-Reθ transition model based on local variables is presented. The model is applied in predicting the transition on swept wings and in determining the optimal height of the roughness strip in artificial transition and the atmospheric flight Reynolds number which can be simulated by the optimal roughness height. In order to validate the ability of γ-Reθ model in predicting transition on sweep wings, boundary layer transition on ONERA M6 wing and DLR-F4 standard model wing are predicted, Reynolds-averaged Navier-Stokes(RANS) equations are solved via structured mesh and finite volume method and skin friction coefficient distributions are acquired, thus the transition locations are acquired, which coincide well with the experimental results, conclusions can be made that the predicting results by this model are reliable. Then roughness trips are fixed on DLR-F4 standard model wing surface and transition locations are acquired via the same method, the results reveal that at Mach number of 0.785 and Reynolds number of 3×106, the optimal height of the roughness strip for artificial transition on DLR-F4 standard model wing is 0.11 mm. The simulating ability of artificial transition to atmospheric flight transition is validated by moving the transition location upward via increasing the Reynolds number, results of which indicate that models with the optimal roughness strip height can simulate atmospheric flight free transition at high Reynolds number.

Key words: artificial transition, roughness strip height, transition model, swept wings, Reynolds number, boundary layer

中图分类号: