[1] HUANG W, POURKASHANIAN M, MA L, et al. Investigation on the flameholding mechanisms in supersonic flows:Backward-facing step and cavity flameholder[J]. Journal of Visualization, 2011, 14(1):63-74.
[2] XIAO L, XIAO Z, DUAN Z, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[3] PLENTOVICH E B, STALLINGS R L, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds:Static-pressure results:NASA TP-3358[R]. Washington, D.C.:NASA, 1993.
[4] TRACY M B, PLENTOVICH E B. Cavity unsteady-pressure measurements at subsonic and transonic speeds:NASA TP-3669[R]. Washington, D.C.:NASA, 1997.
[5] STALLINGS R L, JR, WILCOX F J, JR. Experimental cavity pressure distributions at supersonic speeds:NASA TP-2683[R]. Washington, D.C.:NASA, 1987.
[6] PLENTOVICH E B. Three-dimensional cavity flow fields at subsonic and transonic speeds:NASA TM-4209[R]. Washington, D.C.:NASA, 1990.
[7] DE M J, HENSHAW C. M219 cavity case:Verification and validation data for computational unsteady aerodynamics:TR RTO-TR-26, AC/323(AVT) TP/19[R]. 2000.
[8] 杨党国, 罗新福, 李建强, 等. 来流边界层厚度对开式空腔气动声学特性的影响分析[J]. 空气动力学学报, 2011, 29(4):486-490. YANG D G, LUO X F, LI J Q, et al. Analysis of aeroacoustic characteristics in open cavities influenced by boundary-layer thickness[J]. Acta Aerodynamica Sinica, 2011, 29(4):486-490(in Chinese).
[9] 杨党国, 李建强, 范召林, 等. 超声速来流边界层厚度对浅腔声学特性的影响[J]. 航空动力学报, 2010, 25(4):907-911. YANG D G, LI J Q, FAN Z L, et al. Shallow cavity noise influencing by boundary-layer thickness at supersonic speeds[J]. Journal of Aerospace Power, 2010, 25(4):907-911(in Chinese).
[10] 侯中喜, 易仕和, 王承尧. 超声速开式空腔流动的数值模拟[J]. 推进技术, 2001, 22(5):400-403. HOU Z X, YI S H, WANG C Y. Numerical analysis of supersonic open cavity[J]. Journal of Propulsion Technology, 2001, 22(5):400-403(in Chinese).
[11] 张宝兵. 空腔流动的机理模拟和控制[D]. 南京:南京航空航天大学, 2011. ZHANG B B. Numerical simulation and control of cavity flow[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[12] LEVASSEUR V, SAGAUT P, MALLET M, et al. Unstructured large eddy simulation of the passive control of the flow in a weapon bay[J]. Journal of Fluids and Structures, 2008, 24(8):1204-1215.
[13] RONA A, CHEN X X, ZHANG X, et al. Control of cavity flow scillation through leading edge flow modification:AIAA-1998-0672[R]. Reston:AIAA, 1998.
[14] 管德会, 蔡为民. 扰流板对内埋导弹偏航姿态角的影响[J]. 航空学报, 2014, 35(4):942-947. GUAN D H, CAI W M. Spoiler's effect on the yawing attitude angle of the missile in the bay[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4):942-947(in Chinese).
[15] GLOERFELT X. "Cavity noise", arts et metiers paristech, laboratoire de simulation numérique en mécaniques des fluides[EB/OL](2009)[2015-03-06]. http://sin-web.paris.ensam.fr/squelettes/ref_biblio/Gloerfelt_VKI_2009a.pdf.
[16] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735:587-612.
[17] LARCHEVÊQUE L, SAGAUT P, LE T H, et al. Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number[J]. Journal of Fluid Mechanics, 2004, 516:265-301.
[18] BASLEY J, PASTUR L R, LUSSEYRAN F, et al. On the modulating effect of three-dimensional instabilities in open cavity flows[J]. Journal of Fluid Mechanics, 2014, 759:546-578.
[19] GAI S L, KLEINE H, NEELY A J. Supersonic flow over a shallow open rectangular cavity[J]. Journal of Aircraft, 2014, 52(2):609-616.
[20] TUNA B A, ROCKWELL D. Self-sustained oscillations of shallow flow past sequential cavities[J]. Journal of Fluid Mechanics, 2014, 758:655-685.
[21] BRÈS G A, COLONIUS T. Three-dimensional instabilities in compressible flow over open cavities[J]. Journal of Fluid Mechanics, 2008, 599:309-339.
[22] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modelling:Results of the European-Union Funded Project, 2004-2007[M]. Berlin:Springer Science & Business Media, 2009:270-285.
[23] 司海青, 王同光. 边界条件对三维空腔流动振荡的影响[J]. 南京航空航天大学学报, 2006, 38(5):595-599. SI H Q, WANG T G. Influence of boundary condition on 3-D cavity flow-induced oscillations[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(5):595-599(in Chinese).
[24] ZHANG X, EDWARDS J A. Computational analysis of unsteady supersonic cavity flows driven by thick shear layers[J]. Aeronautical Journal, 1988, 92(119):365-374.
[25] RONA A, DIEUDONNÉ W. Unsteady laminar and turbulent cavity flow models by second order upwind methods:AIAA-1999-0656[R]. Reston:AIAA, 1999.
[26] STANEK M J, VISBAL M R, RIZZETTA D P, et al. On a mechanism of stabilizing turbulent free shear layers in cavity flows[J]. Computers & Fluids, 2007, 36(10):1621-1637.
[27] PENG S H. Simulation of turbulent flow past a rectangular open cavity using DES and unsteady RANS:AIAA-2006-2827[R]. Reston:AIAA, 2006.
[28] LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3):186-216.
[29] VAKILI A D, GAUTHIER C. Control of cavity flow by upstream mass injection[J]. Journal of Aircraft, 1994, 31(1):169-174.
[30] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Farnborough:Ministry of Aviation, Royal Aircraft Establishment, 1964. |