[1] Neumann R D. Temperature and heat flux measurements: challenges for high temperature aerospace application//The 1992 NASA Langley Measurement Technology Conference: Measurement Technology for Aerospace Applications in High-Temperature Environments. Washington, D.C.: NASA, 1992: 1-30.
[2] Wendell H S. X-15 Research result with a selected bibliography, NASA-SP-60. Washington, D.C.: NASA, 1965.
[3] Denison M R, Tellep D M. X-17 Reentry test vehicle R-2 final flight report. Part Ⅱ-analysis of transition and aerodynamic heating on nose cone, LMSD-3003. Virginia: LMSD, 1957.
[4] Anon. Project FIRE integrated post flight evaluation report, flight no. 1, NASA-CR-57017. Washington, D.C.: NASA, 1965.
[5] Lee D B, Goodrich W D. The aerothermodynamic environment of the Apollo command module during superorbital entry, NASA-TN-D-6792. Washington, D.C.: NASA, 1972.
[6] Auweter-Kurtz M, Hald H, Koppenwallner G, et al. German experiments developed for reentry missions[J]. Acta Astronautica, 1996, 38(1): 47-61.
[7] Massobrio F, Viotto R, Serpico M. EXPERT: An atmospheric re-entry test-bed[J]. Acta Astronautica, 2007, 60(12): 974-985.
[8] Praharaj S C, Foster L D. Orbital flight test shuttle external tank flowfield and aerothermal analysis, AIAA-1984-1750. Reston: AIAA, 1984.
[9] Neumann R D, Erbland P J, Kretz L O. Instrumentation of hypersonic structures a review of past application and need of the future, AIAA-1988-2612. Reston: AIAA, 1988.
[10] Jenkins D R. X-15: Extending the frontiers of flight, NASA/SP-2007-562. Washington, D.C.: NASA, 2007.
[11] Robert D Q, Frank V O. Heat transfer measurement obtained on the X-15 airplane including correlation with wind tunnel result, NASA-TM-X-1705. Washington, D.C.: NASA, 1969.
[12] Murphy J D, Rubesin M W. An evaluation of free-flight test data for aerodynamic heating from laminar, turbulent, and transitional boundary layers. Part Ⅱ-the X-17 reentry body, NASA-TA-9527. Washington, D.C.: NASA, 1960.
[13] Balgeman E J, Cassell G. X-17 Re-entry test vehicle R-2 final flight report, NASA-AD-127785. Washington, D.C.: NASA, 1957.
[14] Stainback P C, Johnson C B, Boney L R, et al. A comparison of theoretical predictions and heat-transfer measurements for a flight experiment at Mach 20 (Reentry F), NASA-TM-X-2560. Washington, D.C.: NASA, 1962.
[15] Wright R L, Zoby E V. Flight measurements of boundary-layer transition on a 5 deg half-angle cone at a free-stream Mach number of 20 (Reentry F), NASA-TM-X-2253. Washington, D.C.: NASA, 1962.
[16] Johnson C B, Boney L R. A simple integral method for the calculation of real-gas turbulent boundary layers with variable edge entropy, NASA-TN-D-6217. Washington, D.C.: NASA, 1971.
[17] Scallion W I, Lewis J H. Flight parameters and vehicle performance for project FIRE flight 1 launched april 14, 1964, NASA-TN-D-2996. Washington, D.C.: NASA, 1965.
[18] Anon. Project FIRE integrated post flight evaluation report flight No. Ⅱ, NASA-CR-66000. Washington, D.C.: NASA, 1965.
[19] Cauchon D L. Project FIRE flight 1 radiative heating experiment, NASA-TM-X-1222. Washington, D.C.: NASA, 1969.
[20] Anon. Post launch report for mission as-201 (Apollo Spacecraft 009), NASA-TM-X-72334. Washington, D.C.: NASA, 1966.
[21] Lee D B. Apollo experience report: Aerothermodynamics evaluation, NASA-TN-D-6843. Washington, D.C.: NASA, 1964.
[22] Lee D B, Bertin J J, Goodrich W D. Heat-transfer rate and pressure measurements obtained during Apollo orbital entries, NASA-TN-D-6028. Washington, D.C.: NASA, 1970.
[23] Hearne L F, Chin J H, Woodruff L W. Study of aerothermodynamic phenomena associated with reentry of manned spacecraft, Lockheed Missiles and Space Company Rept. Y-78-66-1. Sunnyvale: Lockheed Missiles and Space Company, 1966.
[24] Toddard L W, Draper H L. Development and testing of development flight instrumentation for the Space Shuttle//Proceedings of International Instrumentation Symposium. Pittsburgh: Instrument Society of America, 1978: 663-672.
[25] Throckmorton D A. Benchmark aerodynamic heat transfer data from the first flight of the Space Shuttle Orbiter, AIAA-1982-0003. Reston: AIAA, 1982.
[26] Bradley P F, Throckmorton D A. Space shuttle orbiter flight heating rate measurement sensitivity to thermal protection system uncertainties, NASA-TM-83138. Washington, D.C.: NASA, 1983
[27] Haney J W. Orbiter entry heating lesson learned from development flight test program, NASA-CP-2283. Washington, D.C.: NASA, 1983.
[28] Kenneth W I, Mary F S. Space Shuttle hypersonic aerodynamic and aerothermodynamic flight research and the comparison to ground test results, NASA-TM-4499. Washington, D.C.: NASA, 1993.
[29] Masao S, Yasutoshi I. Overview of aero- and aerothermodynamic researches on HOPE-X and related activities//34th AIAA Fluid Dynamics Conference and Exhibit. Tokyo: Institute of Space Technology and Aeronautics, Japan Aerospace Exploration Agency, 2004: 28.
[30] Fujii K, Watanabe S, Kurotaki T, et al. Aerodynamic heating measurements on nose and elevon of hypersonic flight experiment vehicle[J]. Journal of Spacecraft and Rockets, 2001, 38(1): 8-14.
[31] Müller E R, Koppenwallner G. RAFLEX An air data system for re-entry vehicles//Fourth Symposium on Aerothermodynamics for Space Vehicles. Capua: European Space Agency, 2002: 457-464.
[32] Turner J, Hoerschgen M, Jung W, et al. SHEFEX hypersonic reentry flight experiment, vehicle and subsystem design, flight performance and prospects, AIAA-2006-8115. Reston: AIAA, 2006.
[33] Barth T. Aero and thermodynamic analysis to SHEFEX I[J]. Engineering Applications of Computational Fluid Mechanics, 2008, 2(1): 76-84.
[34] Eggers T, Longo J, Turner J, et al. The SHEFEX flight experiment pathfinder experiment for a sky based test facility, AIAA-2006-7921. Reston: AIAA, 2006.
[35] Macret J L, Leveugle T. The ARD (Atmospheric Reentry Demonstrator) program-An overview, AIAA-1999-4934. Reston: AIAA, 1999.
[36] Tran P, Paulat J C, Boukhobza P. Re-entry flight experiments lessons learned-the atmospheric reentry demonstrator ARD, NATO RTO-EN-AVT-130. Neuilly-sur-Seine: RTO, 2007.
[37] Alestra S, Colinet J, Dubois J. An inverse method for nonlinear ablative thermics with experimentation of automatic differentiation[J]. Journal of Physics: Conference Series, 2000, 135(1): 1-12.
[38] Gazarik M, Wright M, Little A, et al. Overview of the MEDLI project//2008 IEEE Aerospace Conference. Washington, D.C.: NASA Langley Research Center, 2008: 1-12.
[39] Mahzari M, Braun R D. Time-dependent estimation of Mars Science Laboratory surface heating from simulated MEDLI data, AIAA-2012-2871. Reston: AIAA, 2012.
[40] Mahzari M, Braun R D, White T D. Preliminary analysis of the Mars Science Laboratory's entry aerothermodynamic environment and thermal protection system performance, AIAA-2013-0185. Reston: AIAA, 2013.
[41] Martinez E R, Weber C T, Oishi T, et al. Development of a sheathed miniature aerothermal reentry thermocouple for thermal protection system materials, AIAA-2011-3321. Reston: AIAA, 2011.
[42] Santos J, Beck R, Risch T. Thermal modeling of in-depth thermocouple response in ablative heat shield materials, AIAA-2008-4134. Reston: AIAA, 2008.
[43] White T, Cozmuta I, Santos J, et al. Proposed analysis process for Mars Science Laboratory heat shield sensor plug flight data, AIAA-2011-3957. Reston: AIAA, 2011.
[44] Bose D, White T, Santos J. Initial assessment of Mars Science Laboratory heat shield instrumentation and flight data, AIAA-2013-0908. Reston: AIAA, 2013.
[45] Jr Freeman D C, Reubush D E, McClinton C R. The NASA Hyper-X program, NASA-TM-1997-207243. Washington, D.C.: NASA, 1997.
[46] Berry S, Daryabeigi K, Wurster K, et al. Boundary layer transition on X-43A, AIAA-2008-3736. Reston: AIAA, 2008.
[47] Qian W Q, He K F, Gui Y W, et al. Inverse estimation of surface heat flux for three-dimensional transient heat conduction problem[J]. Acta Aerodynamica Sinica, 2010, 28(2): 155-160. (in Chinese) 钱炜祺, 何开锋, 桂业伟, 等. 非稳态表面热流反演算法研究[J]. 空气动力学学报, 2010, 28(2): 155-160.
[48] Qian W Q, Wu S J, Bu H T, et al. Preliminary investigation of principle experiment for aero-thermodynamic parameter estimation[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(2): 59-62. (in Chinese) 钱炜祺, 吴世见, 卜海涛, 等. 气动热参数辨识原理性实验初步研究[J]. 实验流体力学, 2009, 23(2): 59-62.
[49] Wu H T. An indirect measurement technique for the surface temperature and heat flux[J]. Journal of Astronautic Metrology and Measurement, 2003, 23(4): 30-34. (in Chinese) 吴洪潭. 表面温度和热流的一种间接测量技术[J]. 宇航计测技术, 2003, 23(4): 30-34.
[50] Liu C P. Aero-thermodynamic and thermal protection test heat flux measurement[M]. Beijing: National Defense Industry Press, 2013: 13-190. (in Chinese) 刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013: 13-190.
[51] Cao Y Z, Epstein A H. A double film heat flux gauge and its application[J]. Acta Aeronoutica et Astronautica Sinica, 1985, 6(5): 478-483. (in Chinese) 曹玉璋, A. H. 爱普斯坦. 双膜热流计的研究及其应用[J]. 航空学报, 1985,6(5): 478-483.
[52] Xiao Y W, Xie G J, He F, et al. The research of heat flux film sensor under high temperature environment[J]. Microprocessors, 2012(5): 1-3. (in Chinese) 肖友文, 谢贵久, 何峰, 等. 薄膜高温热流测量技术研究[J]. 微处理机, 2012(5): 1-3.
[53] Yang S J. Research and develop of a miniature transient thin-film heat-flux gauge. Beijing: College of Environmental and Energy Engineering,Beijing University of Technology, 2001.(in Chinese) 杨素君. 微型瞬态薄膜热流计的研制.北京: 北京工业大学环境与能源工程学院, 2001.
[54] Li L, Wang X Z, Feng L L, et al. Study of calibration method of heat flux sensor at high temperature//4th Hypersonic Technology Conference Agenda and Abstracts. Sanya: Hypersonic Research Center CAS, 2011:21. (in Chinese) 李龙, 王新竹, 冯礼理, 等. 热流传感器的高温标定方法的研究//第四届高超声速科技学术会议会议日程及摘要集. 三亚: 中国科学院高超声速科技中心, 2011: 21. |