| [1] 杨琳萱, 马慧才, 庞丽萍. 超声速民机环控系统设计及性能仿真研究[J]. 航空学报, 2025, 46(22):531585.
YANG L X, MA H C, PANG L P, et al. Design and performance simulation of environmental control system for civil supersonic aircraft [J]. Acta Aero-nautica et Astronautica Sinica, 2025, 46(22): 531585 (in Chinese).
[2] 杨世宇, 于海育, 林远方, 等. 具备消耗性热沉的燃油热管理系统性能分析及优化[J]. 航空学报, 2025, 46(4): 130897.
YANG S Y, YU H Y, Lin Y F, et al. Performance analysis and optimization of fuel thermal manage-ment system with expendable heat sink[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 130897(in Chinese).
[3] 杨世宇, 林远方, 于海育, 等. 多温度限制点条件下燃油热管理系统热回油特性分析[J]. 清华大学学报(自然科学版), 2024, 64(5): 841-851.
YANG S Y, LIN Y F, YU H Y, et al. Analysis of the hot fuel return characteristics for a fuel thermal mamanagement system with multiple temperature limit points[J]. Journal Tsinghua University(Sci & Technol), 2024, 64(5): 841-851.
[4] VAN HEERDEN A S J, JUDT D M, JAFARI S, et al. Aircraft thermal management: Practices, technology, system architectures, future challenges, and oppor-tunities[J]. Progress in Aerospace Sciences, 2022, 128: 100767.
[5] SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. Aircraft Thermal Endurance Op-timization Part II: Using A Simple Dual Tank To-pology And Robust Temperature Regula-tion[C/OL]//AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, 2019[2025-08-05].
[6] SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. Aircraft Thermal Endurance Op-timization Part I: Using A Mixed Dual Tank Topolo-gy And Robust Temperature Regula-tion[C/OL]//AIAA Scitech 2019 Forum. San Diego, California: American Institute of Aeronautics and Astronautics, 2019[2025-08-05].
[7] 屠敏, 袁耿民, 薛飞, 等. 综合热管理在先进战斗机系统研制中的应用[J]. 航空学报, 2020, 41(6): 523629.
TU M,YUAN G M, XUE F, et al. Application of in-tegrated thermal management in development of ad-vanced fighter system[J] Acta Aeronautica et Astro-nautica Sinica, 2020, 41(6) :523629 (in Chinese)
[8] 成超乾, 于鹏, 谢宗齐, 等. 基于LNG的高速飞机热管理系统设计建模与分析[J]. 航空学报, 2023, 44(10): 127545.
CHENG C Q,YU P,XIE Z Q,et al. Design simulation of thermal management system for hy-personic aircraft based on liquid natural gas[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 127545 (in Chinese).
[9] SIGTHORSSON D, OPPENHEIMER M W, DOMAN D B. Aircraft Thermal Endurance En-hancement Using A Dual Tank Configuration And Temperature Regulation[C/OL]//2018 AIAA Guid-ance, Navigation, and Control Conference. Kis-simmee, Florida: American Institute of Aeronautics and Astronautics, 2018[2025-08-05].
[10] DOTY J, YERKES K, BYRD L, et al. Dynamic Thermal Management for Aerospace Technology: Review and Outlook[J]. Journal of Thermophysics and Heat Transfer, 2017, 31(1): 86-98.
[11] 王艾伦. 复杂机电系统(键合图—模态分析)方法研究[D/OL]. 中南大学, 2004.
[12] WANG A. Bond Graph Method for the Dynamic Similarity Analysis of Complex Electromechanical System[J]. Journal of Mechanical Engineering, 2010, 46(01): 74.
[13] THOMPSON A F, IEZZI A J, PANGBORN H C, et al. Combined Design and Open-loop Control Opti-mization for Propulsion, Power, and Thermal Man-agement of Hybrid-electric Aircraft[C/OL]//2023 IEEE Conference on Control Technology and Appli-cations (CCTA). Bridgetown, Barbados: IEEE, 2023: 955-962[2025-03-30].
[14] AKSLAND C T, TANNOUS P J, WAGENMAKER M J, et al. Hierarchical Predictive Control of an Un-manned Aerial Vehicle Integrated Power, Propulsion, and Thermal Management System[J]. IEEE Transac-tions on Control Systems Technology, 2023, 31(3): 1280-1295.
[15] KOELN J P, PANGBORN H C, WILLIAMS M A, et al. Hierarchical Control of Aircraft Electro-Thermal Systems[J]. IEEE Transactions on Control Systems Technology, 2020, 28(4): 1218-1232.
[16] PANGBORN H C, KOELN J P, WILLIAMS M A, et al. Experimental Validation of Graph-Based Hierar-chical Control for Thermal Management[J]. Journal of Dynamic Systems, Measurement, and Control, 2018, 140(10): 101016.
[17] HU H. A steady-state simulation model of supple-mental cooling system integrated with vapor com-pression refrigeration cycles for commercial air-plane[J]. Applied Thermal Engineering 2020, 166: 114692.
[18] DUAN Z, SUN H, WU C, et al. Flow-network based dynamic modelling and simulation of the tempera-ture control system for commercial aircraft with multiple temperature zones[J]. Energy, 2022, 238: 121874.
[19] 胡沛, 何世伟, 余长贵, 等. 高空长航时无人机热管理技术发展及挑战[J]. 航空动力学报, 2024: 1-11.
HU P, HE S W, YU C G, et al. Development of thermal management technologies for high-altitude long endurance unmanned aerial vehicles: challeng-es and perspectives[J]. Journal of Aerospace Power, 2024: 1-11.
[20] 杜晨慧. 高超声速飞行器综合热管理及关键技术研究进展[J]. 装备环境工程, 2023, 20(1): 043-051.
DU C H. Research Progress on Integrated Thermal Management and Key Technology of Hypersonic Vehicles[J]. Equipment Environmental Engineering, 2023, 20(1): 043-051.
[21] 滕润航, 贺克伦, 赵甜, 等. 飞行器能源与热管理系统中多能流统一建模与分析方法[J]. 航空学报, 2023, 44(19): 128427.
TENG R H, HE K L, ZHAO T, et al. Unified model-ing and analysis method of multi-energy flow for aircraft energy and thermal management system[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128427 (in Chinese). |