张锐聪1,2, 王天宇2,3, 何玉荣3, 朱嘉琦1,2(), 韩杰才1(
)
收稿日期:
2025-01-26
修回日期:
2025-02-14
接受日期:
2025-03-03
出版日期:
2025-03-17
发布日期:
2025-03-06
通讯作者:
朱嘉琦,韩杰才
E-mail:zhuig@hit.edu.cn;hanjc@hit.edu.cn
基金资助:
Ruicong ZHANG1,2, Tianyu WANG2,3, Yurong HE3, Jiaqi ZHU1,2(), Jiecai HAN1(
)
Received:
2025-01-26
Revised:
2025-02-14
Accepted:
2025-03-03
Online:
2025-03-17
Published:
2025-03-06
Contact:
Jiaqi ZHU, Jiecai HAN
E-mail:zhuig@hit.edu.cn;hanjc@hit.edu.cn
Supported by:
摘要:
随着光热环境调控需求的日益增长,散射型智能窗凭借其响应速度快、能耗低等优势成为研究热点。系统梳理了散射型智能窗技术的研究进展,分析了其在采光调节与热管理中的应用潜力,并探讨了未来发展方向。现有研究表明,散射调控技术可分为表面散射与体积散射两大类。表面散射通过微结构设计结合机械应力、电场及光热响应策略,可实现30%~40%的透过率调控范围和毫秒级响应。体积散射则以聚合物-液晶体系为代表,具有低驱动电压、快速响应(毫秒级)和高透光率等优势,但耐久性与成本仍需优化。当前面临着散射效率不足、环境稳定性差及大尺寸制备困难等技术瓶颈。未来研究应聚焦材料性能优化、多功能复合调控机制开发及大尺寸制备工艺突破,以推动该技术在建筑节能、交通安全及航空等领域的应用。
中图分类号:
张锐聪, 王天宇, 何玉荣, 朱嘉琦, 韩杰才. 智能窗散射调控技术研究进展与应用思考[J]. 航空学报, 2025, 46(6): 531844.
Ruicong ZHANG, Tianyu WANG, Yurong HE, Jiaqi ZHU, Jiecai HAN. Research progress and application perspectives on smart window scattering control technology[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531844.
表1
基于散射机制的智能调光窗技术性能对比
材料类型 | 散射类型 | 刺激-响应模式 | 光学调控性能 | 热管理性能 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
刺激方式 | 条件 | 响应时间 | 可见光波段总透过率TT/% | 可见光波段规则透过率Tlum/% | 雾度H/% | 太阳光谱平均透过率Tsol/% | 太阳光谱平均透过率变化ΔTsol/% | 近红外波段透过率TNIR/% | 室内温度降低/℃ | 其他 | |||
弹性体类 | 表面散射 | 机械拉伸 | 75%形变 | 80~90 | 85→5 | 20→60 | [174] | ||||||
电场 | 6 000 V | 2 s | 80→10 | 2.5→40.0 | [84] | ||||||||
温度 | 70 ℃ | 4 h | 磨砂玻璃状不透明态→透明态 | [88] | |||||||||
水凝胶类 | 体积散射 | 温度 | 29.0~34.5 ℃ | 400 s | 85→0 | 7.5→30.2 | <0.8 | [175] | |||||
温度 | 25~28 ℃ | 120 s | 87.37→0.30 | 低雾度→高雾度 | 69.65 | 12.3 | ε8-13 μm=0.962 | [176] | |||||
温度 | 24~43 ℃ | 500 s | 83→透明状态 | 低雾度(<9.87)→高雾度 | >81 | 13 | 节能计算:夏季9.23 MJ/m³;冬季3.64 MJ/m³ | [177] | |||||
温度 & 光照 | 32 ℃ | 910 s | 91.2→0.3 | 82.6→0.8 | 72.0→1.0 | 9.3(夏季) | [178] | ||||||
温度 | 27.4 ℃ | 73.6→15.7 | 53.6 | 15.0→2.3 | 7 | [179] | |||||||
温度 & 电 | 32 ℃ & 0.6 A | 84→63 | 75.7 | [151] | |||||||||
湿度 | 60% | 10 min | 98.30→55.16 | 54 | 7.2 | [152] | |||||||
体积散射 & 表面散射 | 温度 & 压力 | 40 ℃ & 10 N | 19→86 | 93→<10 | 77→16 | 8(相对于普通Low-E玻璃) | [173] | ||||||
PSL⁃C类 | 体积散射 | 电压 | 100 V & 100 Hz | 85.30→1.51 | [156] | ||||||||
电压 | 40 V | 78.5→10.0 | TIR:42.6%→51.9% | [157] | |||||||||
电压 | 6 V | 毫秒级 | T550 nm:92%→20% | [180] | |||||||||
电压 | 40 V | 毫秒级 | 3.5→98.0 | T550 nm:96.8%→10.1% | [181] | ||||||||
温度 | 33~41 ℃ | 80→20 | [162] | ||||||||||
PDL⁃C类 | 体积 散射 | 电压 | 21.3 V | 毫秒级 | 5→80 | 从高散射状态到高透光状态 | [182] | ||||||
电压 | 18 V | 毫秒级 | 80→0 | [183] |
[1] Federal Aviation Administration. U.S.—Annual and cumulative laser illuminations[EB/OL]. (2024-01-13) [2024-01-13]. . | |
[2] 禚宝国. 基于汽车运行与道路线形各因素影响下眩目的分析及规律研究[D]. 重庆: 重庆交通大学, 2014. | |
ZHUO B G. Analysis and research on the law of glare under the influence of various factors such as automobile operation and road alignment[D]. Chongqing: Chongqing Jiaotong University, 2014 (in Chinese). | |
[3] KOWALCZYK Z, TWARDOWSKI S, MALINOWSKI M, et al. Life cycle assessment (LCA) and energy assessment of the production and use of windows in residential buildings[J]. Scientific Reports, 2023, 13(1): 19752. | |
[4] WU S D, SUN H L, DUAN M F, et al. Applications of thermochromic and electrochromic smart windows: Materials to buildings[J]. Cell Reports Physical Science, 2023, 4(5): 101370. | |
[5] ZHANG R C, ZHANG Z B, HAN J C, et al. Advanced liquid crystal-based switchable optical devices for light protection applications: Principles and strategies[J]. Light, Science & Applications, 2023, 12(1): 11. | |
[6] ZHANG H Q, WANG L, WANG F G, et al. Thermal-responsive smart windows with passive dimming and thermal energy storage[J]. ACS Omega, 2024, 9(25): 27222-27231. | |
[7] JIN X Y, HAO Y N, SU Z, et al. Dual-function smart windows using polymer stabilized cholesteric liquid crystal driven with interdigitated electrodes[J]. Polymers, 2023, 15(7): 1734. | |
[8] LIN C J, HUR J, CHAO C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation[J]. Science Advances, 2022, 8(17): eabn7359. | |
[9] NIU Y C, ZHOU Y, DU D X, et al. Energy saving and energy generation smart window with active control and antifreezing functions[J]. Advanced Science, 2022, 9(6): e2105184. | |
[10] MUSTAFA M N, MOHD ABDAH M A A, NUMAN A, et al. Smart window technology and its potential for net-zero buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113355. | |
[11] PAREKH R. Automating the design process for smart building technologies[J]. World Journal of Advanced Research and Reviews, 2024, 23(2): 1213-1234. | |
[12] 智能调光玻璃[EB/OL]. (2024-01-18) [2024-02-15]. . | |
Smart dimming glass[EB/OL]. (2024-01-18) [2024-02-15]. (in Chinese). | |
[13] 中国商用飞机有限责任公司. 中国商飞公司市场预测年报(2024—2043)[M]. 上海: 中国商用飞机有限责任公司, 2024. | |
Commercial Aircraft Corporation of China. COMAC market forecast annual report (2024—2043)[M]. Shanghai: Commercial Aircraft Corporation of China, 2024 (in Chinese). | |
[14] 张晓光, 唐先锋, 肖晓晟. 非线性光学与非线性光纤光学贯通教程[M]. 北京: 北京邮电大学出版社, 2021. | |
ZHANG X G, TANG X F, XIAO X S. Nonlinear optics including nonlinear fiber optics[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2021 (in Chinese). | |
[15] 张畅, 覃诗译, 刘遥, 等. 基于声光信号的组织散射系数测量方法研究[J]. 中国激光, 2025, 52(3): 0307101. | |
ZHANG C, QIN S Y, LIU Y, et al. Measurement method of tissue scattering coefficient based on acousto-optic signals[J]. China Industrial Economics, 2025, 52(3): 0307101 (in Chinese). | |
[16] 李忻哲, 高爱华, 秦文罡, 等. 积灰光伏板表面散射光强度分布实验研究[J]. 光电子·激光, 2023, 34(3): 284-290. | |
LI X Z, GAO A H, QIN W G, et al. Experimental study on intensity distribution of scattered light on the surface of dust accumulation photovoltaic panels[J]. Journal of Optoelectronics·Laser, 2023, 34(3): 284-290 (in Chinese). | |
[17] 张华. BCC_RAD大气辐射传输模式[M]. 北京: 气象出版社, 2016. | |
ZHANG H. BCC_RAD atmospheric radiation transmission mode[M]. Beijing: China Meteorological Press, 2016 (in Chinese). | |
[18] CHO D, CHEN H, SHIN J, et al. Mechanoresponsive scatterers for high-contrast optical modulation[J]. Nanophotonics, 2022, 11(11): 2737-2762. | |
[19] ZHANG C M, LIU Y Y. Electron-surface scattering from first-principles[J]. ACS Nano, 2024, 18(40): 27433-27439. | |
[20] BULGARELLI B, KISELEV V, ZIBORDI G. Simulation and analysis of adjacency effects in coastal waters: A case study[J]. Applied Optics, 2014, 53(8): 1523-1545. | |
[21] SCHRÖDER S, HERFFURTH T, DUPARRÉ A, et al. Impact of surface roughness on the scatter losses and the scattering distribution of surfaces and thin film coatings[C]∥Optical Fabrication, Testing, and Metrology IV. New York: SPIE, 2011: 87860D. | |
[22] ZHANG Z Z, CHEN M C, ZHANG L C, et al. A straightforward spectral emissivity estimating method based on constructing random rough surfaces[J]. Light, Science & Applications, 2023, 12(1): 266. | |
[23] PIROUZFAM N, SENDUR K. Tungsten based spectrally selective absorbers with anisotropic rough surface texture[J]. Nanomaterials, 2021, 11(8): 2018. | |
[24] DOBROTVORSKIY S, ALEKSENKO B A, BASOVA Y, et al. Light beam scattering from the metal surface with a complex mono-and two-periodic microstructure formed with femtosecond laser radiation[J]. Applied Sciences, 2024, 14(19): 8662. | |
[25] CANINO M, FEDELI P, ALBONETTI C, et al. 4H-SiC surface morphology after Al ion implantation and annealing with C-cap[J]. Journal of Microscopy, 2020, 280(3): 229-240. | |
[26] BEZUS E A, DOSKOLOVICH L L, SOIFER V A. Near-wavelength diffraction gratings for surface plasmon polaritons[J]. Optics Letters, 2015, 40(21): 4935-4938. | |
[27] JENSEN G V, BARKER J G. Effects of multiple scattering encountered for various small-angle scattering model functions[J]. Journal of Applied Crystallography, 2018, 51(5): 1455-1466. | |
[28] ZHANG C X, YUAN Y, LI T J, et al. Analytical method to study multiple scattering characteristics in participating media[J]. International Journal of Heat and Mass Transfer, 2016, 101: 1053-1062. | |
[29] BERK J, FOREMAN M R. Role of multiple scattering in single particle perturbations in absorbing random media[J]. Physical Review Research, 2021, 3(3): 033111. | |
[30] Synopsys. What is light scattering [EB/OL]. (2023-05-10) [2024-01-20]. . | |
[31] HAN J K, LIU X W, JIANG M, et al. A novel light scattering method with size analysis and correction for on-line measurement of particulate matter concentration[J]. Journal of Hazardous Materials, 2021, 401: 123721. | |
[32] KUNZ K, KRAUSE B, KRETZSCHMAR B, et al. Direction dependent electrical conductivity of polymer/carbon filler composites[J]. Polymers, 2019, 11(4): 591. | |
[33] NJOKU E G. Encyclopedia of remote sensing[M]. New York: Springer, 2014. | |
[34] GORDON H R. Light scattering and absorption by randomly-oriented cylinders: Dependence on aspect ratio for refractive indices applicable for marine particles[J]. Optics Express, 2011, 19(5): 4673-4691. | |
[35] 住房和城乡建设部. 建筑照明设计标准: [S]. 北京: 中国建筑工业出版社, 2020. | |
Ministry of Housing and Urban-Rural Development. Standard for lighting design of buildings: [S]. Beijing: China Architecture & Building Press, 2020 (in Chinese). | |
[36] 倪旻, 杨素逸, 彭茂龙. 自然采光在建筑改造节能设计中的有效运用研究[J]. 科学技术创新, 2024(24): 148-151. | |
NI M, YANG S Y, PENG M L. Study on the effective application of natural lighting in the energy-saving design of building reconstruction[J]. Scientific and Technological Innovation, 2024(24): 148-151 (in Chinese). | |
[37] NGAI P, BOYCE P. The effect of overhead glare on visual discomfort[J]. Journal of the Illuminating Engineering Society, 2000, 29(2): 29-38. | |
[38] HÖPE A. Diffuse reflectance and transmittance[M]∥ Spectrophotometry—Accurate Measurement of Optical Properties of Materials. Amsterdam: Elsevier, 2014: 179-219. | |
[39] LIU W C, KOO A, MOLLOY E, et al. APMP pilot study on high transmittance haze[J]. Journal of Physics: Conference Series, 2024, 2864(1): 012011. | |
[40] GERMER T A. Bidirectional scattering distribution function measurements from volume diffusers: Correction factors and associated uncertainties[J]. Applied Optics, 2016, 55(25): 6978-6982. | |
[41] 刘钟琦, 胡旭阳, 罗海宁, 等. 战斗机驾驶舱环境热舒适性仿真与优化[J]. 航空学报, 2024, 45(7): 128919. | |
LIU Z Q, HU X Y, LUO H N, et al. Simulation and optimization of thermal comfort of fighter cockpit environment[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 128919 (in Chinese). | |
[42] 周浩, 彭晋卿, 王蒙, 等. 不同运行状态下光伏窗的太阳得热系数对比研究[J]. 建筑科学, 2023, 39(2): 105-113, 170. | |
ZHOU H, PENG J Q, WANG M, et al. A comparative study on the solar heat gain coefficient of photovoltaic windows under different operating conditions[J]. Building Science, 2023, 39(2): 105-113, 170 (in Chinese). | |
[43] 涂逢祥. 节能窗技术[M]. 北京: 中国建筑工业出版社, 2003. | |
TU F X. Energy-saving window technology[M]. Beijing: China Architecture & Building Press, 2003 (in Chinese). | |
[44] YIN H Z, ZHOU X S, ZHOU Z G, et al. Switchable kirigami structures as window envelopes for energy-efficient buildings[J]. Research, 2023, 6: 0103. | |
[45] LI S Y, LI D H W, CHEN W Q, et al. Simple mathematical models to link climate-based daylight metrics with daylight factor metrics and daylighting design implications[J]. Heliyon, 2023, 9(5): e15786. | |
[46] MORGENSTERN Y, GEISLER W S, MURRAY R F. Human vision is attuned to the diffuseness of natural light[J]. Journal of Vision, 2014, 14(9): 15. | |
[47] KÖSTER H. Daylighting controls, performance, and global impacts[M]∥Sustainable Built Environments. New York: Springer US, 2020: 383-429. | |
[48] HAMEDANI Z, SOLGI E, SKATES H, et al. Visual discomfort and glare assessment in office environments: A review of light-induced physiological and perceptual responses[J]. Building and Environment, 2019, 153: 267-280. | |
[49] KWONG Q J. Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building[J]. Journal of Building Engineering, 2020, 29: 101198. | |
[50] TSENG H Y, CHANG L M, LIN K W, et al. Smart window with active-passive hybrid control[J]. Materials, 2020, 13(18): 4137. | |
[51] QIAN D W, YANG S Y, WANG X F, et al. Thermosensitive scattering hydrogels based on triblock poly-ethers: A novel approach to solar radiation regulation[J]. Polymers, 2023, 16(1): 8. | |
[52] LEE M, KIM G, JUNG Y, et al. Photonic structures in radiative cooling[J]. Light, Science & Applications, 2023, 12(1): 134. | |
[53] LIM J, JUNG J, RHO J, et al. Cooling performance prediction of particle-based radiative cooling film considering particle size distribution[J]. Micromachines, 2024, 15(3): 292. | |
[54] TAN A, AHMAD Z, VUKUSIC P, et al. Multifaceted structurally coloured materials: Diffraction and total internal reflection (TIR) from nanoscale surface wrinkling[J]. Molecules, 2023, 28(4): 1710. | |
[55] SHRESTHA M, ASUNDI A, LAU G K. Smart window based on electric unfolding of microwrinkled TiO2 nanometric films[J]. ACS Photonics, 2018, 5(8): 3255-3262. | |
[56] XU C Y, ESCOBAR M C, GORODETSKY A A. Stretchable cephalopod-inspired multimodal camouflage systems[J]. Advanced Materials, 2020, 32(16): 1905717. | |
[57] LEE S G, LEE D Y, LIM H S, et al. Switchable transparency and wetting of elastomeric smart windows[J]. Advanced Materials, 2010, 22(44): 5013-5017. | |
[58] ZHUANG J, WU D M, ZHANG Y J, et al. Investigation on optical property of diffuser with 3D microstructures[J]. Optik, 2014, 125(24): 7186-7190. | |
[59] BOUCHARD F, SOLDERA M, LASAGNI A F. PMMA optical diffusers with hierarchical surface structures imprinted by hot embossing of laser-textured stainless steel[J]. Advanced Optical Materials, 2023, 11(3): 2202091. | |
[60] WU X N, LIU M Q, HU J G, et al. Light diffusing mechanism of new diffusion phenomena for diffusers with different diffusing patterns[J]. Optical Materials, 2021, 111: 110599. | |
[61] JIANG S L, YIN X L, BAI J X, et al. Fabrication of ultraviolet/thermal-sensitive PMMA/PDMS wrinkle structures and the demonstration as smart optical diffusers[J]. Ceramics International, 2023, 49(7): 10787-10794. | |
[62] JIANG S L, TAN Y, PENG Y, et al. Tunable optical diffusers based on the UV/ozone-assisted self-wrinkling of thermal-cured polymer films[J]. Sensors, 2021, 21(17): 5820. | |
[63] CAO C Y, CHAN H F, ZANG J F, et al. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality[J]. Advanced Materials, 2014, 26(11): 1763-1770. | |
[64] WANG C, ZHANG H R, YANG F Y, et al. Enhanced light scattering effect of wrinkled transparent conductive ITO thin film[J]. RSC Advances, 2017, 7(41): 25483-25487. | |
[65] MOON J, LEE K, PARK S K, et al. Random wrinkle structures for spectrum preserved warm white organic light emitting diodes[J]. Journal of Industrial and Engineering Chemistry, 2023, 117: 298-306. | |
[66] WU K, SUN Y, YUAN H Z, et al. Harnessing dynamic wrinkling surfaces for smart displays[J]. Nano Letters, 2020, 20(6): 4129-4135. | |
[67] HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319-5325. | |
[68] LEE E, ZHANG M L, CHO Y, et al. Tilted pillars on wrinkled elastomers as a reversibly tunable optical window[J]. Advanced Materials, 2014, 26(24): 4127-4133. | |
[69] HYUN J K, PARK J, KIM E, et al. Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning[J]. Advanced Optical Materials, 2014, 2(12): 1213-1220. | |
[70] JEON S, PARK J U, CIRELLI R, et al. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(34): 12428-12433. | |
[71] ZENG S S, ZHANG D Y, HUANG W H, et al. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds[J]. Nature Communications, 2016, 7: 11802. | |
[72] LI Z W, ZHAI Y, WANG Y, et al. Harnessing surface wrinkling-cracking patterns for tunable optical transmittance[J]. Advanced Optical Materials, 2017, 5(19): 1700425. | |
[73] YAO X, HU Y H, GRINTHAL A, et al. Adaptive fluid-infused porous films with tunable transparency and wettability[J]. Nature Materials, 2013, 12(6): 529-534. | |
[74] THOMAS A V, ANDOW B C, SURESH S, et al. Controlled crumpling of graphene oxide films for tunable optical transmittance[J]. Advanced Materials, 2015, 27(21): 3256-3265. | |
[75] 王瑾宇, 徐艺艺, 金梦诗, 等. 改变本征形变特性: 机械超材料启发的液晶弹性体研究进展[J]. 液晶与显示, 2024, 39(3): 278-288. | |
WANG J Y, XU Y Y, JIN M S, et al. Changing intrinsic deformation characteristics: Research progress of liquid crystal elastomers inspired by mechanical metamaterials[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(3): 278-288 (in Chinese). | |
[76] 雷岚, 韩文佳, 娄江. 基于动态键的单/双网络液晶弹性体的研究进展[J]. 复合材料学报, 2024, 41(7): 3372-3388. | |
LEI L, HAN W J, LOU J. Research progress of single/dual network liquid crystal elastomers based on dynamic bonds[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3372-3388 (in Chinese). | |
[77] ZHANG Z B, LI J J, ZHANG R C, et al. Recent advances in responsive liquid crystal elastomer-contained fibrous composites[J]. Responsive Materials, 2024, 2(4): e20240021. | |
[78] WANG Z X, SI M Q, HAN J Y, et al. Hydrogen-bonded supramolecular network enabled gentle reprogramming of liquid crystal elastomer toward evolutionary robot[J]. Angewandte Chemie International Edition, 2025, 64(7): e202416095. | |
[79] PINCHIN N P, GUO H S, METELING H, et al. Liquid crystal networks meet water: It’s complicated![J]. Advanced Materials, 2024, 36(12): 2303740. | |
[80] GORIELY A, MIHAI L A. Liquid crystal elastomers wrinkling[J]. Nonlinearity, 2021, 34(8): 5599-5629. | |
[81] CHENG M, CAI W F, WANG Z M, et al. Responsive liquid crystal network microstructures with customized shapes and predetermined morphing for adaptive soft micro-optics[J]. ACS Applied Materials & Interfaces, 2024, 16(24): 31776-31787. | |
[82] 邓亚峰, 周洪福, 李全来, 等. 基于介电弹性体的驱动器研究进展[J]. 中国塑料, 2021, 35(11): 161-172. | |
DENG Y F, ZHOU H F, LI Q L, et al. Research progress in actuator based on dielectric elastomer[J]. China Plastics, 2021, 35(11): 161-172 (in Chinese). | |
[83] SHRESTHA M, ASUNDI A, LAU G K. Electrically tunable window based on microwrinkled ZnO/Ag thin film[C]∥Electroactive Polymer Actuators and Devices (EAPAD) 2017. New York: SPIE, 2017: 101261V. | |
[84] SHIAN S, KJEER P, CLARKE D R. Electric-field induced surface instabilities of soft dielectrics and their effects on optical transmittance and scattering[J]. Journal of Applied Physics, 2018, 123(11): 113105. | |
[85] VAN DEN ENDE D, KAMMINGA J D, BOERSMA A, et al. Voltage-controlled surface wrinkling of elastomeric coatings[J]. Advanced Materials, 2013, 25(25): 3438-3442. | |
[86] SHIAN S, CLARKE D R. Electrically tunable window device[J]. Optics Letters, 2016, 41(6): 1289-1292. | |
[87] SHIAN S, CLARKE D R. Electrically-tunable surface deformation of a soft elastomer[J]. Soft Matter, 2016, 12(13): 3137-3141. | |
[88] HOU H H, YIN J, JIANG X S. Reversible Diels-Alder reaction to control wrinkle patterns: From dynamic chemistry to dynamic patterns[J]. Advanced Materials, 2016, 28(41): 9126-9132. | |
[89] AGRAWAL A, LUCHETTE P, PALFFY-MUHORAY P, et al. Surface wrinkling in liquid crystal elastomers[J]. Soft Matter, 2012, 8(27): 7138-7142. | |
[90] HOU H H, LI F D, SU Z L, et al. Light-reversible hierarchical patterns by dynamic photo-dimerization induced wrinkles[J]. Journal of Materials Chemistry C, 2017, 5(34): 8765-8773. | |
[91] KOSA T, SUKHOMLINOVA L, SU L L, et al. Light-induced liquid crystallinity[J]. Nature, 2012, 485: 347-349. | |
[92] ZONG C Y, ZHAO Y, JI H P, et al. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization[J]. Angewandte Chemie International Edition, 2016, 55(12): 3931-3935. | |
[93] LI F D, HOU H H, YIN J, et al. Near-infrared light-responsive dynamic wrinkle patterns[J]. Science Advances, 2018, 4(4): eaar5762. | |
[94] MA T J, LI J, MA X D, et al. Temperature-controlled dynamic moisture-responsive wrinkled patterns[J]. Acta Chimica Sinica, 2023, 81(7): 749. | |
[95] DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947): 1518-1521. | |
[96] MICHEL A U, ZALDEN P, CHIGRIN D N, et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses[J]. ACS Photonics, 2014, 1(9): 833-839. | |
[97] YU S D, CHEN J C, GOMARD G, et al. Recent progress in light-scattering porous polymers and their applications[J]. Advanced Optical Materials, 2023, 11(13): 2203134. | |
[98] PATTELLI L, EGEL A, LEMMER U, et al. Role of packing density and spatial correlations in strongly scattering 3D systems[J]. Optica, 2018, 5(9): 1037. | |
[99] HU J G, ZHOU Y M. The properties of nano(ZnO-CeO2)@polysiloxane core-shell microspheres and their application for fabricating optical diffusers[J]. Applied Surface Science, 2016, 365: 166-170. | |
[100] SUTHABANDITPONG W, TANI M, TAKAI C, et al. Facile fabrication of light diffuser films based on hollow silica nanoparticles as fillers[J]. Advanced Powder Technology, 2016, 27(2): 454-460. | |
[101] ZHONG X, HU S C, WANG Y J, et al. In situ hydrothermal synthesis of polysiloxane@3D flower-like hollow MgAl LDH microspheres with superior light diffusing properties for optical diffusers[J]. Applied Clay Science, 2019, 171: 92-99. | |
[102] CHEN D, LIU X W, HAN J K, et al. Measurements of particulate matter concentration by the light scattering method: Optimization of the detection angle[J]. Fuel Processing Technology, 2018, 179: 124-134. | |
[103] MENDOZA J M, CHEN K, WALTERS S, et al. Classification of aggregates using multispectral two-dimensional angular light scattering simulations[J]. Molecules, 2022, 27(19): 6695. | |
[104] AGRAWAL Y C, WHITMIRE A, MIKKELSEN O A, et al. Light scattering by random shaped particles and consequences on measuring suspended sediments by laser diffraction[J]. Journal of Geophysical Research: Oceans, 2008, 113(C4): C04023. | |
[105] WANG J X, XU C G, NILSSON A M, et al. A novel phase function describing light scattering of layers containing colloidal nanospheres[J]. Nanoscale, 2019, 11(15): 7404-7413. | |
[106] LIU X, XIONG Y, SHEN J B, et al. Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer[J]. Optics Express, 2015, 23(14): 17793. | |
[107] WU G, GUO S, YIN Y, et al. Hollow microspheres of SiO2/PMMA nanocomposites: Preparation and their application in light diffusing films[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28(6): 2701-2713. | |
[108] GE D T, LEE E, YANG L L, et al. A robust smart window: Reversibly switching from high transparency to angle-independent structural color display[J]. Advanced Materials, 2015, 27(15): 2489-2495. | |
[109] GUO S M, LIANG X, ZHANG C H, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2942-2947. | |
[110] ZHANG H M, ZHONG T J, CHEN M, et al. The physical properties of alkene-terminated liquid crystal molecules/E8 mixture and the electro-optical properties as they doped in polymer-dispersed liquid crystal systems[J]. Liquid Crystals, 2018, 45(8): 1118-1128. | |
[111] ZHANG H M, CHEN M, JIANG T M, et al. Cyano terminated tolane compounds for polymer dispersed liquid crystal application: Relationship between cyano terminated tolane based molecular structures and electro-optical properties[J]. Liquid Crystals, 2018, 45(12): 1771-1782. | |
[112] KATARIYA-JAIN A, MHATRE M M, DIERKING I, et al. Enhanced thermo-electro-optical and dielectric properties of carbon nanoparticle-doped polymer dispersed liquid crystal based switchable windows[J]. Journal of Molecular Liquids, 2024, 393: 123575. | |
[113] HE T Y, YANG B, ZHANG L, et al. A study on electro-optical properties of polymer dispersed liquid crystal films doped with barium titanate nanoparticles prepared by nucleophile-initiated thiol-ene click reaction[J]. Liquid Crystals, 2020, 47(7): 1004-1018. | |
[114] HEMAIDA A, GHOSH A, SUNDARAM S, et al. Simulation study for a switchable adaptive polymer dispersed liquid crystal smart window for two climate zones (Riyadh and London)[J]. Energy and Buildings, 2021, 251: 111381. | |
[115] MESLOUB A, GHOSH A, KOLSI L, et al. Polymer-Dispersed Liquid Crystal (PDLC) smart switchable windows for less-energy hungry buildings and visual comfort in hot desert climate[J]. Journal of Building Engineering, 2022, 59: 105101. | |
[116] QAHTAN A M, ALMAWGANI A H M, GHOSH A. Smart double glazing integrated polymer dispersed liquid crystal for enhancing building’s thermal performance in hot-arid climate[J]. Journal of Building Engineering, 2023, 80: 107971. | |
[117] DENG Y, YANG Y H, XIAO Y H, et al. Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation[J]. Advanced Functional Materials, 2023, 33(35): 2301319. | |
[118] PARK J Y, KIM H K. Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes[J]. RSC Advances, 2018, 8(64): 36549-36557. | |
[119] XIA Y, LIANG X, JIANG Y, et al. High-efficiency and reliable smart photovoltaic windows enabled by multiresponsive liquid crystal composite films and semi-transparent perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(33): 1900720. | |
[120] WANG J H, LIEN S Y, HO J R, et al. Optical diffusers based on silicone emulsions[J]. Optical Materials, 2009, 32(2): 374-377. | |
[121] 胡耀强, 陈法锦, 刘海宁, 等. 聚N-异丙基丙烯酰胺水凝胶的制备及热致聚集行为[J]. 材料导报, 2018, 32(14): 2491-2496. | |
HU Y Q, CHEN F J, LIU H N, et al. Preparation of poly (N-isopropylacrylamide) hydrogel and its thermally induced aggregation behavior[J]. Materials Review, 2018, 32(14): 2491-2496 (in Chinese). | |
[122] 刘凯. PNIPAM温敏水凝胶的制备及其热致变色特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. | |
LIU K. Preparation and thermochromic properties of PNIPAM thermosensitive hydrogel[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese). | |
[123] 刘壮, 谢锐, 巨晓洁, 等. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报, 2016, 67(1): 202-208. | |
LIU Z, XIE R, JU X J, et al. Progress in stimuli-responsive smart hydrogels with rapid responsive characteristics[J]. CIESC Journal, 2016, 67(1): 202-208 (in Chinese). | |
[124] 谭帼馨, 崔英德. HEMA共聚物水凝胶中水的存在状态[J]. 膜科学与技术, 2004, 24(5): 25-28. | |
TAN G X, CUI Y D. States of water in HEMA hydrogels[J]. Membrane Science and Technology, 2004, 24(5): 25-28 (in Chinese). | |
[125] ZHOU Y, DONG X, MI Y, et al. Hydrogel smart windows [J]. Journal of Materials Chemistry A, 2020, 8(20): 10007-10025. | |
[126] ZHONG S, XUE Y X, WANG K W, et al. pH-sensitive tunable thermochromic hydrogel with carbon quantum dots for smart windows[J]. National Science Open, 2024, 3(3): 20230071. | |
[127] KABEROVA Z, KARPUSHKIN E, NEVORALOVÁ M, et al. Microscopic structure of swollen hydrogels by scanning electron and light microscopies: Artifacts and reality[J]. Polymers, 2020, 12(3): 578. | |
[128] ZHOU Y, CAI Y F, HU X, et al. Temperature-responsive hydrogel with ultra-large solar modulation and high luminous transmission for “smart window” applications[J]. Journal of Materials Chemistry A, 2014, 2(33): 13550-13555. | |
[129] KLOUDA L, MIKOS A G. Thermoresponsive hydrogels in biomedical applications[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68(1): 34-45. | |
[130] KATONO H, MARUYAMA A, SANUI K, et al. Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid)[J]. Journal of Controlled Release, 1991, 16(1-2): 215-227. | |
[131] OWENS D E, JIAN Y C, FANG J E, et al. Thermally responsive swelling properties of polyacrylamide/poly(acrylic acid) interpenetrating polymer network nanoparticles[J]. Macromolecules, 2007, 40(20): 7306-7310. | |
[132] LIU R X, FRAYLICH M, SAUNDERS B R. Thermoresponsive copolymers: From fundamental studies to applications[J]. Colloid and Polymer Science, 2009, 287(6): 627-643. | |
[133] PLATÉ N A, LEBEDEVA T L, VALUEV L I. Lower critical solution temperature in aqueous solutions of N-alkyl-substituted polyacrylamides[J]. Polymer Journal, 1999, 31(1): 21-27. | |
[134] DEFOREST C A, ANSETH K S. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions[J]. Nature Chemistry, 2011, 3(12): 925-931. | |
[135] GRIFFIN D R, KASKO A M. Photodegradable macromers and hydrogels for live cell encapsulation and release[J]. Journal of the American Chemical Society, 2012, 134(31): 13103-13107. | |
[136] FOMINA N, MCFEARIN C, SERMSAKDI M, et al. UV and near-IR triggered release from polymeric nanoparticles[J]. Journal of the American Chemical Society, 2010, 132(28): 9540-9542. | |
[137] CHUJO Y, SADA K, SAEGUSA T. Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation[J]. Macromolecules, 1990, 23(10): 2693-2697. | |
[138] HE J, TREMBLAY L, LACELLE S, et al. Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin[J]. Soft Matter, 2011, 7(6): 2380-2386. | |
[139] BARRETT C J, MAMIYA J I, YAGER K G, et al. Photo-mechanical effects in azobenzene-containing soft materials[J]. Soft Matter, 2007, 3(10): 1249-1261. | |
[140] KAGEYAMA Y, TANIGAKE N, KUROKOME Y, et al. Macroscopic motion of supramolecular assemblies actuated by photoisomerization of azobenzene derivatives[J]. Chemical Communications, 2013, 49(82): 9386-9388. | |
[141] LV C, SUN X C, XIA H, et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing[J]. Sensors and Actuators B: Chemical, 2018, 259: 736-744. | |
[142] KO B, BADLOE T, YANG Y, et al. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures[J]. Nature Communications, 2022, 13(1): 6256. | |
[143] GUPTA P, VERMANI K, GARG S. Hydrogels: from controlled release to pH-responsive drug delivery[J]. Drug Discovery Today, 2002, 7(10): 569-579. | |
[144] SHARPE L A, DAILY A M, HORAVA S D, et al. Therapeutic applications of hydrogels in oral drug delivery[J]. Expert Opinion on Drug Delivery, 2014, 11(6): 901-915. | |
[145] KHARE A R, PEPPAS N A, MASSIMO G, et al. Measurement of the swelling force in ionic polymeric networks I. Effect of pH and ionic content[J]. Journal of Controlled Release, 1992, 22(3): 239-244. | |
[146] PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al. Hydrogels in biology and medicine: From molecular principles to bionanotechnology[J]. Advanced Materials, 2006, 18(11): 1345-1360. | |
[147] KWON I, BAE Y, OKANO T, et al. Stimuli sensitive polymers for drug delivery systems[C]∥Proceedings of the International Symposium on Controlled Release of Bioactive Materials. Wiley Online Library, 1991: 304-305. | |
[148] PEPPAS N A. Hydrogels in medicine and pharmacy[M]. Boca Raton: CRC Press, 1986. | |
[149] KHALID S, QADIR M, MASSUD A, et al. Effect of degree of cross-linking on swelling and drug release behaviour of poly (methyl methacrylate-co-itaconic acid)[P (MMA/IA)] hydrogels for site specific drug delivery[J]. Journal of Drug Delivery Science and Technology, 2009, 19(6): 413-418. | |
[150] CASTELLÓN E, ZAYAT M, LEVY D. Novel reversible humidity-responsive light transmission hybrid thin-film material based on a dispersive porous structure with embedded hygroscopic and deliquescent substances[J]. Advanced Functional Materials, 2018, 28(27): 1704717. | |
[151] ZHOU Y, LAYANI M, BOEY F Y C, et al. Electro‐thermochromic devices composed of self‐assembled transparent electrodes and hydrogels[J]. Advanced Materials Technologies, 2016, 1(5): 1600069. | |
[152] KRISHNA N D, KISHORE R S, ZHANG Y X, et al. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting[J]. Energy & Environmental Science, 2018, 11(8): 2179-2187. | |
[153] 丁文全, 王力娜, 杨亚非, 等. 手性掺杂聚合物稳定VA液晶的光学性能[J]. 液晶与显示, 2023, 38(12): 1645-1652. | |
DING W Q, WANG L N, YANG Y F, et al. Optical properties of chiral polymer stability VA liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(12): 1645-1652 (in Chinese). | |
[154] 张欣敏, 陆红波, 王琦, 等. 改变直流电场方向调控聚合物稳定胆甾相液晶的反射带隙[J]. 液晶与显示, 2021, 36(8): 1075-1083. | |
ZHANG X M, LU H B, WANG Q, et al. Modulation of reflection band in polymer-stabilized cholesteric liquid crystals by changing DC electric field direction[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(8): 1075-1083 (in Chinese). | |
[155] 张艺瑜, 宋春风, 郭金宝. 基于聚合物稳定液晶的智能调光膜研究进展[J]. 液晶与显示, 2021, 36(9): 1225. | |
ZHANG Y Y, SONG C F, GUO J B. Research progress of smart windows based on polymer stabilized liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1225 (in Chinese). | |
[156] LI H, XU J J, REN Y X, et al. Preparation of highly durable reverse-mode polymer-stabilized liquid crystal films with polymer walls[J]. ACS Applied Materials & Interfaces, 2022, 15(1): 2228-2236. | |
[157] ZHANG Z B, ZHANG R C, XU L G, et al. Visible and infrared optical modulation of PSLC smart films doped with ATO nanoparticles[J]. Dalton Transactions, 2021, 50(29): 10033-10040. | |
[158] RADKA BRIAN P, PANDE GAURAV K, WHITE TIMOTHY J. The contribution of network elasticity to electro-optic response in polymer stabilized cholesteric liquid crystals[J]. Soft Matter, 2023, 19(25): 4634-4641. | |
[159] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases[J]. Nature Materials, 2002, 1(1): 64-68. | |
[160] IWATA, SUZUKI, AMAYA, et al. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases[J]. Macromolecules, 2009, 42(6): 2002-2008. | |
[161] PAN, YU, ZHANG, et al. Effects on thermo‐optical properties of the composition of a polymer‐stabilised liquid crystal with a smectic A-chiral nematic phase transition[J]. Liquid Crystals, 2008, 35(9): 1151-1160. | |
[162] PAN G H, CAO H, GUO R W, et al. A polymer stabilized liquid crystal film with thermal switching characteristics between light transmission and adjustable light scattering[J]. Optical Materials, 2009, 31(8): 1163-1166. | |
[163] LAHIRI T, MAJUMDER T P. The effect of cross-linked chains of polymer network on the memory states of polymer stabilized ferroelectric molecules[J]. Polymer, 2012, 53(10): 2121-2127. | |
[164] LI X S, GUO Y Q, HUAI H, et al. The effect of monomer and chiral dopant content on reverse-mode polymer stabilized cholesteric liquid crystal display[J]. Journal of Molecular Liquids, 2020, 309: 113112. | |
[165] SHARMA V, KUMAR P, CHINKY, et al. Preparation and electrooptic study of reverse mode polymer dispersed liquid crystal: Performance augmentation with the doping of nanoparticles and dichroic dye[J]. Journal of Applied Polymer Science, 2020, 137(22): 48745. | |
[166] WU J J, TAN C P, SUN C H. Electro-optical properties of the normally transparent type anisotropic polymer dispersed liquid crystal films[J]. Journal of Polymer Research, 1998, 5: 45-49. | |
[167] NICOLETTA F P, DE FILPO G, CUPELLI D, et al. Orientation control of liquid crystal droplets dispersed in a polymer matrix[J]. Applied Physics Letters, 2001, 79(26): 4325. | |
[168] CHEN C W, BRIGEMAN A N, HO T J, et al. Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal[J]. ACS Applied Materials & Interfaces, 2018, 8(3): 691-697. | |
[169] ZHANG R C, SONG Z C, CAO W X, et al. Multispectral smart window: Dynamic light modulation and electromagnetic microwave shielding[J]. Light, Science & Applications, 2024, 13(1): 223. | |
[170] MADHURI P L, SHUDDHODANA, JUDEH Z M A, et al. Cochleate-doped liquid crystal as switchable metamaterial window mediated by molecular orientation modified aggregation[J]. Particle & Particle Systems Characterization, 2020, 37(5): 2000067. | |
[171] ABDULHALIM I, LAKSHMI MADHURI P, DIAB M, et al. Novel easy to fabricate liquid crystal composite with potential for electrically or thermally controlled transparency windows[J]. Optics Express, 2019, 27(12): 17387-17401. | |
[172] PAPPU L M, MARTIN-PALMA R J, MARTÍN-ADRADOS B, et al. Voltage controlled scattering from porous silicon Mie-particles in liquid crystals[J]. Journal of Molecular Liquids, 2019, 281: 108-116. | |
[173] LIANG H X, ZHANG X P, WANG F Q, et al. Bio-inspired micropatterned thermochromic hydrogel for concurrent smart solar transmission and rapid visible-light stealth at all-working temperatures[J]. Light, Science & Applications, 2024, 13(1): 202. | |
[174] MAHPEYKAR S M, XIONG Q Y, WEI J, et al. Stretchable hexagonal diffraction gratings as optical diffusers for in situ tunable broadband photon management[J]. Advanced Optical Materials, 2016, 4(7): 1106-1114. | |
[175] XIE G X, LI Y F, WU C H, et al. Dual response multi-function smart window: An integrated system of thermochromic hydrogel and thermoelectric power generation module for simultaneous temperature regulation and power generation[J]. Chemical Engineering Journal, 2024, 481: 148531. | |
[176] GUO R, SHEN Y C, CHEN Y, et al. KCA/Na2SiO3/PNIPAm hydrogel with highly robust and strong solar modulation capability for thermochromic smart window[J]. Chemical Engineering Journal, 2024, 486: 150194. | |
[177] XIE G X, LI Y F, LUO J, et al. Scalable fabrication of thermochromic smart windows for broadening temperature ranges and their coupled thermoelectric power generation[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(40): 14890-14901. | |
[178] LEI Q X, YU W, XIE G X, et al. Novel photothermochromic smart window based on PNIPAm-glass-MXene/PAM with high shield, fast response, and excellent stability[J]. Solar RRL, 2023, 7(7): 2200990. | |
[179] SUDHAKARAN N, ABRAHAM M, PARVATHY P A, et al. Flexible and thermoresponsive AEMR-pNIPAM/Cs0.33WO3 composite hydrogel film with NIR shielding potential for smart windows and smart curtains[J]. Chemical Engineering Journal, 2024, 490: 151603. | |
[180] ZHOU Y, YOU Y X, LIAO X L, et al. Effect of polymer network topology on the electro-optical performance of polymer stabilized liquid crystal (PSLC) devices[J]. Macromolecular Chemistry and Physics, 2020, 221(18): 2000185. | |
[181] HU X, ZHANG X, YANG W, et al. Stable and scalable smart window based on polymer stabilized liquid crystals[J]. Journal of Applied Polymer Science, 2020, 137(30): 48917. | |
[182] HE Z M, YU P, ZHANG H M, et al. Silicon nanostructure-doped polymer/nematic liquid crystal composites for low voltage-driven smart windows[J]. Nanotechnology, 2021, 33(8): 085205. | |
[183] ZHAO C H, HU Y C, XU J J, et al. Research on the morphology, electro-optical properties and mechanical properties of electrochromic polymer-dispersed liquid crystalline films doped with anthraquinone dyes[J]. Crystals, 2023, 13(5): 735. | |
[184] KAUR M, MALIK P. New graphene oxide doped polymer dispersed liquid crystal nanocomposites targeted to eco-friendly and energy-efficient smart windows[J]. Journal of Molecular Liquids, 2024, 410: 125565. | |
[185] YAN J, FAN X W, LIU Y F, et al. Passive patterned polymer dispersed liquid crystal transparent display[J]. Chinese Optics Letters, 2022, 20(1): 013301. | |
[186] XIAN H Y, LI L, DING Y L, et al. Preparation and orthogonal analysis for dual-responsive electrochromic polymer dispersed liquid crystal devices[J]. Polymers, 2023, 15(8): 1860. | |
[187] 余莎莎, 陈星雨, 西华大学. 城市空中交通领域关键技术创新与挑战[J]. 航空学报, 2024, 45(): 26-47. | |
YU S S, CHEN X Y, XI H. Innovation and challenge of key technologies in urban air traffic field[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 26-47 (in Chinese). |
[1] | 钟子迪, 郭琦, 涂智军, 赵慧洁, 王森博. 基于液晶偏振光栅的长波红外偏振成像研究[J]. 航空学报, 2025, 46(3): 630523-630523. |
[2] | 叶林, 刘存良, 朱安冬, 周天亮. 紧凑凸肋通道对尾缘劈缝气膜冷却特性的影响[J]. 航空学报, 2022, 43(3): 125174-125174. |
[3] | 叶林, 刘存良, 杨寓全, 黄蓉, 朱安冬. V肋对尾缘劈缝气膜冷却特性的影响[J]. 航空学报, 2021, 42(6): 124181-124181. |
[4] | 饶宇, 刘宇阳, 万超一. 具有气膜出流孔和针肋的双层壁冷却结构内的冲击传热性能[J]. 航空学报, 2018, 39(1): 121418-121418. |
[5] | 李文灿, 饶宇, 李博, 秦江. 具有边缘倒圆凹陷涡发生器换热性能实验[J]. 航空学报, 2017, 38(9): 520999-520999. |
[6] | 高丽敏, 李永增, 张帅, 蔡明. 扩压叶栅剪敏液晶试验与图像处理[J]. 航空学报, 2017, 38(9): 520981-520981. |
[7] | 杨彬;徐国强. 旋转状态下孔排构型气膜冷却特性实验研究[J]. 航空学报, 2010, 31(8): 1524-1537. |
[8] | 刘存良;朱惠人;白江涛;许都纯. 涡轮叶片上收缩-扩张形孔排的全表面气膜冷却特性[J]. 航空学报, 2010, 31(4): 687-693. |
[9] | 周雷声;朱惠人;杨祺;李春林. 带射流的收缩型通道内部换热特性液晶瞬态实验[J]. 航空学报, 2010, 31(1): 35-40. |
[10] | 刘存良;朱惠人;白江涛;许都纯. 基于瞬态液晶测量技术的收缩-张形孔气膜冷却特性[J]. 航空学报, 2009, 30(5): 812-818. |
[11] | 杨通海;朱惠人;张丽;许都纯. 窄通道内冲击冷却局部换热特性的瞬态液晶测量[J]. 航空学报, 2009, 30(11): 2031-2036. |
[12] | 杨彬;徐国强;吴宏伟. 旋转状态下气膜冷却换热特性的实验研究[J]. 航空学报, 2009, 30(10): 1809-1815. |
[13] | 张靖周;李永康;谭晓茗;李立国. 阵列射流冲击冷却局部对流换热特性的数值计算与实验研究[J]. 航空学报, 2004, 25(4): 339-342. |
[14] | 王世芬;王宇;刘鹏. 高超音速后掠激波与边界层干扰流场特性[J]. 航空学报, 1993, 14(9): 449-454. |
[15] | 李立国;张东来;江军. 液晶在冲击冷却研究中的应用[J]. 航空学报, 1988, 9(6): 284-290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学