收稿日期:
2024-10-28
修回日期:
2024-11-07
接受日期:
2024-11-27
出版日期:
2024-12-17
发布日期:
2024-12-10
通讯作者:
杨智春
E-mail:yangzc@nwpu.edu.cn
基金资助:
Received:
2024-10-28
Revised:
2024-11-07
Accepted:
2024-11-27
Online:
2024-12-17
Published:
2024-12-10
Contact:
Zhichun YANG
E-mail:yangzc@nwpu.edu.cn
Supported by:
摘要:
针对传统动载荷识别方法中频响函数矩阵求逆运算导致的不适定性问题,以及深度学习方法缺乏物理可解释性的局限,提出了一种全新的物理嵌入式神经网络(PENN)动载荷识别模型与方法。通过将结构动力学参数(如模态质量、模态刚度、模态阻尼等)直接嵌入神经网络中,构建出具有物理可解释性的PENN动载荷识别模型。PENN模型能够以正向计算过程直接识别动载荷的功率谱密度,避免了传统方法的频响函数矩阵求逆运算,并能够对其内部的物理参数进行自适应修正,保证了在先验物理参数不准确时仍能实现动载荷的高精度识别。详细阐述了方法机理、PENN模型构建规则、参数设定及训练流程,并对多种工况下的动载荷进行了数值仿真与实验验证,结果表明,本方法在动力学系统先验参数不准确和仅有1组训练样本的情况下,识别动载荷的皮尔逊相关系数均不低于95%,展现出较好的鲁棒性和工程应用潜力。
中图分类号:
杨智春, 杨特. 动载荷识别物理嵌入式神经网络模型与方法[J]. 航空学报, 2025, 46(5): 531450.
Zhichun YANG, Te YANG. Physical embedded neural network model and method for dynamic load identification[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531450.
表2
固支梁计算模态参数
模态阶数 | 测点处模态振型 | |||||||
---|---|---|---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | #6 | |||
1 | 0.355 8 | 1.031 7 | 1.519 6 | 1.519 6 | 1.031 8 | 0.355 8 | 51.522 7 | 59.553 7 |
2 | 0.792 2 | 1.508 3 | 0.776 0 | -0.775 8 | -1.508 3 | -0.792 4 | 141.283 4 | 164.156 5 |
3 | 1.208 0 | 1.043 5 | -0.989 3 | -0.988 9 | 1.043 9 | 1.207 7 | 277.006 2 | 321.852 2 |
4 | 1.467 6 | -0.140 8 | -1.195 4 | 1.195 4 | 0.140 8 | -1.467 6 | 457.872 8 | 532.000 1 |
5 | 1.490 0 | -1.190 3 | 0.467 7 | 0.467 7 | -1.190 3 | 1.490 0 | 683.982 8 | 794.716 2 |
6 | 1.251 5 | -1.331 9 | 1.405 5 | -1.405 5 | 1.331 9 | -1.251 5 | 955.314 9 | 1 109.975 6 |
表3
PENN的输入层神经元内部权值向量
输入层神经元 | 神经元端口对应权值参数 | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
0.050 0 | 0.109 6 | 0.166 1 | 0.193 1 | 0.189 0 | 0.103 7 | |
0.147 8 | 0.217 9 | 0.152 1 | -0.008 7 | -0.158 6 | -0.127 7 | |
0.217 0 | 0.108 9 | -0.142 2 | -0.180 2 | 0.063 4 | 0.142 4 | |
0.217 0 | -0.108 9 | -0.142 2 | 0.180 2 | 0.063 4 | -0.142 4 | |
0.147 8 | -0.217 9 | 0.152 1 | 0.008 7 | -0.158 6 | 0.127 7 | |
0.050 0 | -0.109 6 | 0.166 1 | -0.193 1 | 0.189 0 | -0.103 7 |
1 | 杨智春, 王魏, 李斌, 等. 航空结构动强度分析与设计[M]. 西安: 西北工业大学出版社, 2021: 1-5. |
YANG Z C, WANG W, LI B, et al. Dynamic strength analysis and design of aviation structure[M]. Xi’an: Northwestern Polytechnical University Press, 2021: 1-5 (in Chinese). | |
2 | 王文睿. 炮舱结构在冲击载荷作用下的振动特性分析[D]. 西安: 西北工业大学, 2007. |
WANG W R. Analysis of vibration characteristics of Gun cabin structure under impact load[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese). | |
3 | 赵志彬. 飞机炮舱结构有限元静力分析及疲劳寿命估算[D]. 西安: 西北工业大学, 2007. |
ZHAO Z B. Finite element static analysis and fatigue life estimation of aircraft Gun cabin structure[D]. Xi’an: Northwestern Polytechnical University, 2007 (in Chinese). | |
4 | 陈忠明, 何连珠. 炮舱结构段的动特性与动响应分析[J]. 飞机设计, 1998, 18(3): 16-23. |
CHEN Z M, HE L Z. Dynamic characteristics and dynamic response analysis of Gun cabin structure section[J]. Aircraft Design, 1998, 18(3): 16-23 (in Chinese). | |
5 | 杨智春, 贾有. 动载荷的识别方法[J]. 力学进展, 2015, 45(0): 29-54. |
YANG Z C, JIA Y. The identification of dynamic loads[J]. Advances in Mechanics, 2015, 45(0): 29-54 (in Chinese). | |
6 | BARTLETT F D, FLANNELLY W G. Model verification of force determination for measuring vibratory loads[J]. Journal of the American Helicopter Society, 1979, 24(2): 10-18. |
7 | 张景绘, 李万新. 直升机六力素识别[J]. 航空学报, 1986, 7(2): 139-147. |
ZHANG J H, LI W X. Six-force-factor identification of helicopters[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(2): 139-147 (in Chinese). | |
8 | 方明新. 超高层建筑风荷载反演分析[D]. 武汉: 武汉理工大学, 2016. |
FANG M X. Inverse analysis of wind load on super high-rise building[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese). | |
9 | 黄坤. 基于高层建筑动力响应的动荷载反演研究[D]. 武汉: 武汉理工大学, 2019. |
HUANG K. Study on dynamic load inversion based on dynamic response of high-rise buildings[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). | |
10 | LAW S S, CHAN T H T, ZENG Q H. Moving force identification: A time domain method[J]. Journal of Sound and Vibration, 1997, 201(1): 1-22. |
11 | 张方, 秦远田, 邓吉宏. 桥梁结构移动载荷识别的新方法[J]. 南京航空航天大学学报, 2006, 38(1): 22-26. |
ZHANG F, QIN Y T, DENG J H. Dynamic moving load identification method for bridge structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(1): 22-26 (in Chinese). | |
12 | 杜玲, 李范春. 西部高墩大跨径桥梁桥墩的失稳载荷识别方法[J]. 应用基础与工程科学学报, 2016, 24(2): 304-314. |
DU L, LI F C. Research of buckling load identification method about piers of western high pier long-span bridges[J]. Journal of Basic Science and Engineering, 2016, 24(2): 304-314 (in Chinese). | |
13 | 董庆锋, 徐兴平, 畅元江, 等. 时域载荷识别法在海洋结构中的应用[J]. 钢结构, 2005, 20(5): 57-59. |
DONG Q F, XU X P, CHANG Y J, et al. Research on identification of dynamic forces on offshore platform[J]. Steel Construction, 2005, 20(5): 57-59 (in Chinese). | |
14 | OKUBO N, TANABE S, TATSUNO T. Identification of forces generated by a machine under operating condition[C]∥Proceedings of the 3rd International Modal Analysis Conference (IMAC). 1985: 920-927. |
15 | 冀灵子. 基于电机电流的转子系统载荷识别方法研究[D]. 太原: 太原理工大学, 2016. |
JI L Z. Research on load identification method of rotor system based on motor current[D]. Taiyuan: Taiyuan University of Technology, 2016 (in Chinese). | |
16 | 郑海起, 马吉胜. 基于铣削力识别的铣削监测与铣刀故障诊断[J]. 振动、测试与诊断, 2002, 22(2): 89-92. |
ZHENG H Q, MA J S. Milling monitoring and its cutter fault diagnosis by milling forces[J]. Journal of Vibration, Measurement & Diagnosis, 2002, 22(2): 89-92 (in Chinese). | |
17 | 赵继, 王立江, 孟继安. 超声振动切削系统中弯曲振动刀杆的谐振模式[J]. 声学学报, 1992, 17(1): 22-29. |
ZHAO J, WANG L J, MENG J A. The resonance pattern of cutter bar in ultrasonic vibration cutting system[J]. Acta Acustica, 1992, 17(1): 22-29 (in Chinese). | |
18 | 孟光, 周徐斌, 苗军. 航天重大工程中的力学问题[J]. 力学进展, 2016, 46(0): 267-322. |
MENG G, ZHOU X B, MIAO J. Mechanical problems in momentous projects of aerospace engineering[J]. Advances in Mechanics, 2016, 46(0): 267-322 (in Chinese). | |
19 | WANG L, LIU Y R, XU H Y. Review: Recent developments in dynamic load identification for aerospace vehicles considering multi-source uncertainties[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(2): 271-287. |
20 | 张曾, 张江监, 王裕昌. 飞机起落架滑行载荷识别[J]. 航空学报, 1994, 15(1): 54-61. |
ZHANG Z, ZHANG J J, WANG Y C. Identification of airplane landing gear loads during taxiing[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(1): 54-61 (in Chinese). | |
21 | 侯乔乔. 全机落震载荷识别方法研究[J]. 工程与试验, 2019, 59(4): 24-26. |
HOU Q Q. Research on load recognition method of ship-borne aircraft’s full-scale drop[J]. Engineering & Test, 2019, 59(4): 24-26 (in Chinese). | |
22 | 王洪波, 赵长见, 廖选平, 等. 基于飞行工作模态分析的飞行器动载荷识别研究[J]. 动力学与控制学报, 2017, 15(2): 178-183. |
WANG H B, ZHAO C J, LIAO X P, et al. Study on dynamic load identification of aircraft based on operational mode analysis[J]. Journal of Dynamics and Control, 2017, 15(2): 178-183 (in Chinese). | |
23 | 刘恒春, 朱德懋, 孙久厚. 振动载荷识别的奇异值分解法[J]. 振动工程学报, 1990, 3(1): 24-33. |
LIU H C, ZHU D M, SUN J H. A singular value decomposition method for the identification vibration loads[J]. Journal of Vibration Engineering, 1990, 3(1): 24-33 (in Chinese). | |
24 | O’CALLAHAN J, PIERGENTILI F. Force estimation using operational data[C]∥Proceedings of the 14th International Modal Analysis Conference (IMAC). 1996: 1586-1592. |
25 | KARLSSON S E S. Identification of external structural loads from measured harmonic responses[J]. Journal of Sound and Vibration, 1996, 196(1): 59-74. |
26 | 田燕, 王菁, 郑海起. 多载荷识别频响函数矩阵求逆法的改进算法[J]. 军械工程学院学报, 2002, 14(4): 13-17. |
TIAN Y, WANG J, ZHENG H Q. Improved algorithm of inverse matrix of frequency response function in multi-load identification[J]. Journal of Ordnance Engineering College, 2002, 14(4): 13-17 (in Chinese). | |
27 | 吕洪彬. 基于逆系统的动态载荷识别研究[D]. 大连: 大连理工大学, 2010. |
LÜH B. Research on dynamic load identification based on inverse system[D]. Dalian: Dalian University of Technology, 2010 (in Chinese). | |
28 | YU L, CHAN T H T. Moving force identification based on the frequency-time domain method[J]. Journal of Sound and Vibration, 2003, 261(2): 329-349. |
29 | JACQUELIN E, BENNANI A, HAMELIN P. Force reconstruction: Analysis and regularization of a deconvolution problem[J]. Journal of Sound and Vibration, 2003, 265(1): 81-107. |
30 | LIU Y, SHEPARD W S. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of Sound and Vibration, 2005, 282(1-2): 37-60. |
31 | 梅立泉, 崔维庚. 面载荷识别的TSVD正则化方法[J]. 应用力学学报, 2010, 27(1): 140-144, 229-230. |
MEI L Q, CUI W G. TSVD regularization method for area load reconstruction[J]. Chinese Journal of Applied Mechanics, 2010, 27(1): 140-144, 229-230 (in Chinese). | |
32 | 毛玉明, 陈健, 刘靖华, 等. 考虑模型误差的动载荷反演问题研究[J]. 振动与冲击, 2012, 31(24): 16-19. |
MAO Y M, CHEN J, LIU J H, et al. Dynamic loading estimation problem with structural model errors[J]. Journal of Vibration and Shock, 2012, 31(24): 16-19 (in Chinese). | |
33 | 郑晓霞, 郑锡涛, 缑林虎. 多尺度方法在复合材料力学分析中的研究进展[J]. 力学进展, 2010, 40(1): 41-56. |
ZHENG X X, ZHENG X T, GOU L H. The research progress on multiscale method for the mechanical analysis of composites[J]. Advances in Mechanics, 2010, 40(1): 41-56 (in Chinese). | |
34 | ZHOU J, DONG L L, GUAN W, et al. Impact load identification of nonlinear structures using deep recurrent neural network[J]. Mechanical Systems and Signal Processing, 2019, 133: 106292. |
35 | STASZEWSKI W J, WORDEN K, WARDLE R, et al. Fail-safe sensor distributions for impact detection in composite materials[J]. Smart Materials and Structures, 2000, 9(3): 298-303. |
36 | GHAJARI M, SHARIF-KHODAEI Z, ALIABADI M H, et al. Identification of impact force for smart composite stiffened panels[J]. Smart Materials and Structures, 2013, 22(8): 085014. |
37 | WANG J Y. MIMO SVM based uncorrelated multi-source dynamic random load identification algorithm in frequency domain[J]. Journal of Computational In-formation Systems, 2015, 11(22): 8165-8176. |
38 | WANG J G, ZHANG J, WANG Y J, et al. Nonlinear identification of one-stage spur gearbox based on pseudo-linear neural network[J]. Neurocomputing, 2018, 308: 75-86. |
39 | REN S F, CHEN G R, LI T G, et al. A deep learning-based computational algorithm for identifying damage load condition: an artificial intelligence inverse problem solution for failure analysis[J]. Computer Modeling in Engineering & Sciences, 2018, 117(3): 287-307. |
40 | CHEN G R, LI T G, CHEN Q J, et al. Application of deep learning neural network to identify collision load conditions based on permanent plastic deformation of shell structures[J]. Computational Mechanics, 2019, 64(2): 435-449. |
41 | 夏鹏. 利用深度学习的动载荷识别方法研究[D]. 西安: 西北工业大学, 2019. |
XIA P. Research on dynamic load identification method using deep learning[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese). | |
42 | 夏鹏, 杨特, 徐江, 等. 利用时延神经网络的动载荷倒序识别[J]. 航空学报, 2021, 42(7): 224452. |
XIA P, YANG T, XU J, et al. Reversed time sequence dynamic load identification method using time delay neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 224452 (in Chinese). | |
43 | 杨特, 杨智春, 梁舒雅, 等. 平稳随机载荷的信号特征提取与深度神经网络识别[J]. 航空学报, 2022, 43(9): 225952. |
YANG T, YANG Z C, LIANG S Y, et al. Feature extraction and identification of stationary random dynamic load using deep neural network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 225952 (in Chinese). | |
44 | 张方, 朱德懋. 基于神经网络模型的动载荷识别[J]. 振动工程学报, 1997(2): 40-46. |
ZHANG F, ZHU D M. Dynamic load identification based on neural network model[J]. Journal of Vibration Engineering, 1997(2): 40-46 (in Chinese). | |
45 | JIA Y, YANG Z C, GUO N, et al. Random dynamic load identification based on error analysis and weighted total least squares method[J]. Journal of Sound and Vibration, 2015, 358: 111-123. |
46 | 伍旭强, 张雷, 朱继梅. 结构有限元模型的元素修正法[J]. 振动工程学报, 1992, 5(2): 178-181. |
WU X Q, ZHANG L, ZHU J M. Element correction method for structural finite element models[J]. Journal of Vibration Engineering, 1992, 5(2): 178-181 (in Chinese). | |
47 | HU H Y. Vibration mechanics[M]. Singapore: Springer, 2022: 45-51. |
[1] | 葛向东, 吴法勇, 刘永泉, 安中彦, 乔保栋, 高强, 秦天龙, 周笑阳. 航空发动机整机振动问题研究方法及工程应用[J]. 航空学报, 2024, 45(4): 628353-628353. |
[2] | 刁尹, 张智, 彭越, 李杨, 张博戎, 张志国. 火箭着陆段能量管理与轨迹优化技术[J]. 航空学报, 2024, 45(15): 229634-229634. |
[3] | 刘哲, 张羲格, 韦常柱, 崔乃刚. 亚轨道飞行器再入轨迹高精度自适应凸规划[J]. 航空学报, 2023, 44(S2): 729430-729430. |
[4] | 何信, 石宗英, 钟宜生. 基于速度障碍的多无人船协同避碰[J]. 航空学报, 2023, 44(S2): 729758-729758. |
[5] | 闫循良, 王培臣, 王舒眉, 杨宇轩, 王宽. 基于混沌多项式的RBCC飞行器上升段鲁棒轨迹快速优化[J]. 航空学报, 2023, 44(21): 528349-528349. |
[6] | 杨特, 杨智春, 梁舒雅, 康在飞, 贾有. 平稳随机载荷的信号特征提取与深度神经网络识别[J]. 航空学报, 2022, 43(9): 225952-225952. |
[7] | 陆传雨, 陆铭慧, 刘浩宇, 徐喜浩. 基于改进式SL0算法的超声混叠信号分离[J]. 航空学报, 2022, 43(7): 425419-425419. |
[8] | 张宏伟, 达新宇, 胡航, 倪磊, 潘钰. 基于多机协作的认知无人机网络能效联合优化[J]. 航空学报, 2021, 42(6): 324548-324548. |
[9] | 刘哲, 陆浩然, 郑伟, 闻国光, 王奕迪, 周祥. 多滑翔飞行器时间协同轨迹快速规划[J]. 航空学报, 2021, 42(11): 524497-524497. |
[10] | 邓云山, 夏元清, 孙中奇, 沈刚辉. 扰动环境下火星精确着陆自主轨迹规划方法[J]. 航空学报, 2021, 42(11): 524834-524834. |
[11] | 吴肖, 曾捷, 胡子康, 李明, 胡锡涛. 变截面悬臂梁结构动载荷辨识方法[J]. 航空学报, 2020, 41(9): 223806-223806. |
[12] | 安泽, 熊芬芬, 梁卓楠. 基于偏置比例导引与凸优化的火箭垂直着陆制导[J]. 航空学报, 2020, 41(5): 323606-323606. |
[13] | 周祥, 张洪波, 何睿智, 汤国建, 包为民. 基于凸优化的再入轨迹三维剖面规划方法[J]. 航空学报, 2020, 41(11): 623842-623842. |
[14] | 郑文涛, 蒋永松, 赵航, 潘若痴, 赵勇. 风扇出口导向叶片低噪声设计Ⅱ:数值验证[J]. 航空学报, 2019, 40(10): 122956-122956. |
[15] | 温卓群, 王鹏飞, 张雁, 蒋艳芬. 面向大尺度结构的力学超材料减振技术[J]. 航空学报, 2018, 39(S1): 721651-721651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学