1 |
罗巧云. 第五代战斗机在未来空战中的应用[J]. 国防科技, 2017, 38(4): 57-62.
|
|
LUO Q Y. Review on the operational application of the fifth generation fighter in future air combat[J]. National Defense Technology, 2017, 38(4): 57-62 (in Chinese).
|
2 |
WALTERS E A, IDEN S, MCCARTHY K, et al. INVENT modeling, simulation, analysis and optimization: AIAA-2010-0287[R]. Reston: AIAA, 2010.
|
3 |
孙友师, 俞笑, 黄铁山. 美国空军能量优化飞机研究进展综述[C]∥2017年(第三届)中国航空科学技术大会论文集(下册). 2017: 38-41.
|
|
SUN Y S, YU X, HUANG T S. Development of USA energy optimized aircraft[C]∥ 2017(Third) China Aviation Science and Technology Conference Proceedings (Second Volume). 2017: 38-41 (in Chinese).
|
4 |
彭灿, 徐向华, 梁新刚. 载人航天器主动热控系统热负荷布局优化[J]. 宇航学报, 2015, 36(8): 974-980.
|
|
PENG C, XU X H, LIANG X G. Optimization on heat load arrangement for active thermal control system of manned spacecraft[J]. Journal of Astronautics, 2015, 36(8): 974-980 (in Chinese).
|
5 |
MASER A, GARCIA E, MAVRIS D. Thermal management modeling for integrated power systems in a transient, multidisciplinary environment[C]∥Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2009.
|
6 |
胡晓辰. 基于MATLAB仿真平台的动力与热管理系统建模及性能分析[D]. 南京: 南京航空航天大学, 2017: 39-46.
|
|
HU X C. Modeling and performance analysis of power and thermal management system based on MATLAB simulation platform[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 39-46 (in Chinese).
|
7 |
ROBERTS R, EASTBOURN S. Vehicle level tip-to-tail modeling of an aircraft[J]. International Journal of Thermodynamics, 2014, 17(2): 107-115.
|
8 |
ALYANAK E J, ALLISON D L. Fuel thermal management system consideration in conceptual design sizing[C]∥Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016.
|
9 |
MCCARTHY K, WALTERS E, HELTZEL A, et al. Dynamic thermal management system modeling of a more electric aircraft: 2008-01-2886[R]. Warrendale: SAE International, 2008.
|
10 |
HELTZEL A J, MCCARTHY K, PATNAIK S. Rapid access to high-resolution thermal/fluid component modeling: 2012-01-2170[R]. Warrendale: SAE International, 2012.
|
11 |
GERMAN B, DASKILEWICZ M, DOTY J. Using interactive visualizations to assess aircraft thermal management system modeling approaches[C]∥Proceedings of the 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Reston: AIAA, 2011.
|
12 |
BODIE M, RUSSELL G, MCCARTHY K, et al. Thermal analysis of an integrated aircraft model[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
|
13 |
ROBERTS R, EASTBOURN S, MASER A. Generic aircraft thermal tip-to-tail modeling and simulation[C]∥Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
|
14 |
陈群, 郝俊红, 付荣桓, 等. 基于 理论的热系统分析和优化的能量流法[J]. 工程热物理学报, 2017, 38(7): 1376-1383.
|
|
CHEN Q, HAO J H, FU R H, et al. Entransy-based power flow method for analysis and optimization of thermal systems[J]. Journal of Engineering Thermophysics, 2017, 38(7): 1376-1383 (in Chinese).
|
15 |
HE K L, CHEN Q, MA H, et al. An isomorphic multi-energy flow modeling for integrated power and thermal system considering nonlinear heat transfer constraint[J]. Energy, 2020, 211: 119003.
|
16 |
HE K L, ZHAO T, CHEN Q, et al. Matrix-based network heat transfer modeling approach and its application in thermal system analysis[J]. Applied Thermal Engineering, 2020, 181(162):115854.
|
17 |
韩如冰. 航空发动机燃油系统热仿真方法研究[D]. 北京:清华大学, 2021: 59-65.
|
|
HAN R B. Investigation on thermal simulation method of aeroengine fuel system[D]. Beijing: Tsinghua University, 2021: 59-65 (in Chinese).
|
18 |
秦海鸿, 严仰光. 多电飞机的电气系统[M]. 北京: 北京航空航天大学出版社, 2016: 11-22, 297-302, 365-374.
|
|
QIN H H, YAN Y G. Power system for more electric aircraft[M]. Beijing: Beihang University Press, 2016: 11-22, 297-302, 365-374 (in Chinese).
|
19 |
黄建, 张震. 机载供电系统带恒功率负载稳定性[J]. 电工技术学报, 2011, 26(S1): 213-217, 223.
|
|
HUANG J, ZHANG Z. Stability of aircraft power supply system with constant power loads[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 213-217, 223 (in Chinese).
|
20 |
徐向华. 小型空间站热管理系统动态仿真与实验研究[D]. 北京: 清华大学, 2003: 36-39.
|
|
XU X H. Dynamic simulation and experimental study on thermal management system of small space station[D].Beijing: Tsinghua University, 2003: 36-39 (in Chinese).
|
21 |
YANG Z Y, BØRSTING H. Energy efficient control of a boosting system with multiple variable-speed pumps in parallel[C]∥49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2011: 2198-2203.
|
22 |
PEREZ-LOMBARD L, ORTIZ J, MAESTRE I R. The map of energy flow in HVAC systems[J]. Applied Energy, 2011, 88(12): 5020-5031.
|
23 |
SOUNDARARAJAN K, HO H K, SU B. Sankey diagram framework for energy and exergy flows[J]. Applied Energy, 2014, 136: 1035-1042.
|
24 |
HARENDRA S, ORYSHCYHN D, GERDEMANN S, et al. Modeling energy flow in an integrated pollutant removal (IPR) system with CO2 capture integrated with oxy-fuel combustion[J]. Energy & Fuels, 2012, 26(11): 6930-6937.
|
25 |
CHEN Q. Entransy dissipation-based thermal resistance method for heat exchanger performance design and optimization[J]. International Journal of Heat and Mass Transfer, 2013, 60: 156-162.
|
26 |
CHEN Q, HAO J H, ZHAO T. An alternative energy flow model for analysis and optimization of heat transfer systems[J]. International Journal of Heat and Mass Transfer, 2017, 108: 712-720.
|
27 |
杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2006: 246-252.
|
|
YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 246-252 (in Chinese).
|
28 |
CHEN X, CHEN Q, CHEN H, et al. Heat current method for analysis and optimization of heat recovery-based power generation systems[J]. Energy, 2019, 189: 116209.
|
29 |
ZHAO T, CHEN X, HE K L, et al. A hierarchical and categorized algorithm for efficient and robust simulation of thermal systems based on the heat current method[J]. Energy, 2021, 215: 119105.
|
30 |
CHAIBAKHSH A, GHAFFARI A. Steam turbine model[J]. Simulation Modelling Practice and Theory, 2008, 16(9): 1145-1162.
|