首页 >

碳纳米管树脂复合薄膜的抗横向高速冲击行为研究

李周仪1,刘浩然2,任腾飞3,刘骁骁1,王弘起4   

  1. 1. 西安理工大学土木建筑工程学院
    2. 西安理工大学
    3. 西北工业大学
    4. 陕西建工(延安)新型建材有限公司
  • 收稿日期:2024-01-26 修回日期:2024-05-09 出版日期:2024-05-14 发布日期:2024-05-14
  • 通讯作者: 刘骁骁
  • 基金资助:
    国家自然科学基金;陕西省教育厅一般专项科研计划项目

Study on transverse high-speed impact resistance of carbon nanotube resin composite films

  • Received:2024-01-26 Revised:2024-05-09 Online:2024-05-14 Published:2024-05-14

摘要: 本文利用一级轻气炮实验,研究了碳纳米管(Carbon nanotube, CNT)薄膜抵抗横向高速冲击的性能以及树脂含量对冲击性能的影响规律;结合数值仿真手段,获得了在直径为3mm的钢球的冲击作用下纯CNT薄膜以及浸渍了20%、50%、80%浓度的环氧树脂溶液的CNT薄膜的临界穿透速度,分别为26.2m/s、27.1m/s、27.96m/s和35.3m/s。结果表明环氧树脂可以提升CNT薄膜的抗冲击力学性能,且随着环氧树脂浓度的提高,提升效果逐渐明显。通过微观形貌观测发现,CNT树脂复合薄膜在高速冲击下,其增强机制主要以微裂纹吸能为主。本研究通过研究CNT树脂复合薄膜在高速冲击下的力学行为,揭示CNT在横向冲击载荷下的增强机制,旨在对层间增韧复合材料的设计、制备及其力学性能研究提供帮助和指导。

关键词: 碳纳米管薄膜, 复合材料, 高速冲击, 数值仿真, 抗冲击性能

Abstract: In this paper, the performance of carbon nanotube (CNT) films against transverse high-speed impacts and the effect of resin content on the impact performance are investigated using a one-stage light air gun experiment; Combined with numerical simulations, the critical penetration velocities of pure CNT films and those impregnated with 20%, 50% and 80% epoxy resin solution under the impact of a steel ball with a diameter of 3mm are obtained, which are 26.2m/s, 27.1m/s, 27.96m/s and 35.3m/s, respectively. The results show that the epoxy resin can enhance the mechanical properties of CNT films, and the enhancement effect is gradually obvious with the increase of epoxy resin concentration. Through the observation of microscopic morphology, it is found that the enhancement mechanism of CNT resin composite film under high-speed impact is mainly based on the energy absorption of microcracks. In this study, the mechanical behaviour of CNT resin composite films under high-speed impact is investigated to reveal the enhancement mechanism of CNT under transverse impact load, aiming to provide help and guidance for the design and preparation of interlayer toughened composites and their mechanical property research.

Key words: carbon nanotube films, composite material, high speed impact, numerical simulation, impact resistanc

中图分类号: