1 |
LIU B, HAN Q, ZHONG X P, et al. The impact damage and residual load capacity of composite stepped bonding repairs and joints[J]. Composites Part B: Engineering, 2019, 158: 339-351.
|
2 |
ZHANG S N, LI Y C, LUO M, et al. Modelling of nonlinear and dual-modulus characteristics and macro-orthogonal cutting simulation of unidirectional Carbon/Carbon composites[J]. Composite Structures, 2022, 280: 114928.
|
3 |
MOURITZ A P. Review of z-pinned laminates and sandwich composites[J]. Composites Part a-Applied Science and Manufacturing, 2020, 139(198): 106128.
|
4 |
HOFFMANN J, SABBAN J, SCHARR G. Pullout performance of circumferentially notched z-pins in carbon fiber reinforced laminates[J]. Composites Part A: Applied Science and Manufacturing, 2018, 110: 197-202.
|
5 |
YASAEE M, BIGG L, MOHAMED G, et al. Influence of Z-pin embedded length on the interlaminar traction response of multi-directional composite laminates[J]. Materials & Design, 2017, 115: 26-36.
|
6 |
STEEVES C A, FLECK N A. In-plane properties of composite laminates with through-thickness pin reinforcement[J]. International Journal of Solids and Structures, 2006, 43(10): 3197-3212.
|
7 |
CHANG P, MOURITZ A P, COX B N. Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension[J]. Composites Science and Technology, 2006, 66(13): 2163-2176.
|
8 |
HOFFMANN J, SCHARR G. Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension[J]. Composites Part A: Applied Science and Manufacturing, 2018, 109: 163-170.
|
9 |
DING A X, LI S X, SUN J X, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures, 2016, 136: 34-43.
|
10 |
SWEETING R D, THOMSON R S. The effect of thermal mismatch on Z-pinned laminated composite structures[J]. Composite Structures, 2004, 66(1-4): 189-195.
|
11 |
ZHANG S N, XU Y J, ZHANG W H, et al. Micro-mechanical modeling study of the influence of cure process on the interfacial cracking of Z-pinned laminates[J]. Composite Structures, 2021, 280(4): 114889.
|
12 |
ZHANG S N, XU Y J, ZHANG W H. Experimental and numerical study on the influence of cure process on the bridging traction mechanism of z-pins[J]. International Journal of Mechanical Sciences, 2023, 245: 108096.
|
13 |
BIANCHI F, ZHANG X. A cohesive zone model for predicting delamination suppression in z-pinned laminates[J]. Composites Science and Technology, 2011, 71(16): 1898-1907.
|
14 |
SIMONOVSKI I, CIZELJ L. Cohesive zone modeling of intergranular cracking in polycrystalline aggregates[J]. Nuclear Engineering and Design, 2015, 283: 139-147.
|
15 |
ZHANG S N, XU Y J, ZHANG W H. A novel micromechanical model to study the influence of cure process on the in-plane tensile properties of z-pinned laminates[J]. Composite Structures, 2022, 300: 116156.
|
16 |
JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469.
|
17 |
MANOJ KUMAR B. Micromechanics of a lamina, composite structures, design, mechanics, analysis, manufacturing, and testing[M]. Boca Raton: CRC Press; 2017.
|
18 |
SHIMBO M, OCHI M, SHIGETA Y. Shrinkage and internal stress during curing of epoxide resins[J]. Journal of Applied Polymer Science, 1981, 26(7): 2265-2277.
|
19 |
ABOU MSALLEM Y, JACQUEMIN F, BOYARD N, et al. Material characterization and residual stresses simulation during the manufacturing process of epoxy matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(1): 108-115.
|
20 |
MAIARÙ M, D’MELLO R J, WAAS A M. Characterization of intralaminar strengths of virtually cured polymer matrix composites[J]. Composites Part B: Engineering, 2018, 149(1072): 285-295.
|
21 |
FU C, WANG X. Micro-mechanical analysis of matrix crack-induced delamination in cross-ply laminates in tension[J]. Composite Structures, 2020, 243: 112202.
|
22 |
LIU K S, TSAI S W. A progressive quadratic failure criterion for a laminate [J]. Composites Science and Technology, 1998, 58: 1023-1032.
|
23 |
BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439-449.
|
24 |
GU J F, CHEN P H. Some modifications of Hashin’s failure criteria for unidirectional composite materials[J]. Composite Structures, 2017, 182(4): 143-152.
|
25 |
STEEVES C A, FLECK N A. In-plane properties of composite laminates with through-thickness pin reinforcement[J]. International Journal of Solids and Structures, 2006, 43(10): 3197-3212.
|
26 |
TRAN T D, KELLY D, PRUSTY B G, et al. Micromechanical modelling for onset of distortional matrix damage of fiber reinforced composite materials[J]. Composite Structures, 2012, 94(2): 745-757.
|
27 |
HUI X Y, XU Y J, ZHANG W H. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites[J]. Composite Structures, 2021, 263(5): 113681.
|
28 |
CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16): 1415-1438.
|
29 |
HOU Y L, MENG L, LI G H, et al. A novel multiscale modeling strategy of the low-velocity impact behavior of plain woven composites[J]. Composite Structures, 2021, 274(11): 114363.
|
30 |
HOFFMANN J, SCHARR G. Compression properties of composite laminates reinforced with rectangular z-pins[J]. Composites Science and Technology, 2018, 167: 463-469.
|