收稿日期:
2023-12-06
修回日期:
2023-12-27
接受日期:
2024-03-15
出版日期:
2024-03-28
发布日期:
2024-03-25
通讯作者:
何明
E-mail:heming@aeu.edu.cn
基金资助:
Ming HE1,2(), Haotian CHEN1, Wei HAN1, Cheng DENG3, Haibin DUAN4
Received:
2023-12-06
Revised:
2023-12-27
Accepted:
2024-03-15
Online:
2024-03-28
Published:
2024-03-25
Contact:
Ming HE
E-mail:heming@aeu.edu.cn
Supported by:
摘要:
无人机(UAV)集群已在灾害救援、侦察监视、反恐维稳等领域得到了广泛应用,以“集群智能”技术为主的高度自主智能化无人机集群已成为世界各国的关注热点。鸟群具有高自主性和鲁棒性的特点,仿鸟群智能行为,将其行为规律映射到无人机集群系统,是解决无人机集群协同控制难题的重要手段。为更好指导无人机集群技术及理论创新,对无人机仿鸟群协同控制发展现状、关键技术和未来发展展开综述。首先,介绍国内外无人机集群典型项目及主要进展;其次,从内部结构—交互方式—行为机制3个层次梳理鸟群研究现状,总结了仿鸟群分层控制、仿鸟群交互控制和仿鸟群行为控制3项无人机仿鸟群协同控制关键技术及面临的挑战;再次,面向无人机集群协同控制发展需求,提出无人机仿鸟群行为相变控制技术;最后,展望无人机仿鸟群协同控制未来趋势,以期为未来无人机集群发展提供思路和依据。
中图分类号:
何明, 陈浩天, 韩伟, 邓成, 段海滨. 无人机仿鸟群协同控制发展现状及关键技术[J]. 航空学报, 2024, 45(20): 29946.
Ming HE, Haotian CHEN, Wei HAN, Cheng DENG, Haibin DUAN. Development status and key technologies of cooperative control of bird-inspired UAV swarms[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 29946.
表 1
美军典型无人机集群项目进展
项目名称 | 开始时间 | 研究内容 | 最新试验 |
---|---|---|---|
“山鹑(Perdix)” | 2014年 | 微型无人机集群,执行火力打击、获取情报、侦察监视等任务 | 2016年10月,3架F/A-18F战斗机空中投放103架“山鹑”无人机,测试其编队飞行、集体决策和编队修复等能力 |
拒止环境中协同行动(CODE) | 2014年 | 发展自主协同能力,使无人机集群能在拒止环境中与移动目标交战 | 2022年1月,1架MQ-20无人机与5架虚拟机编队进行协同搜索任务,虚拟敌方进入指定的搜索区域,编队自主决定哪架无人机自动脱离编队并执行空对空战术 |
“小精灵(Gremlins)” | 2015年 | 可空中发射、自主协调、分布式作战、可回收的无人机集群,执行侦察、监视、网络战、电磁战等任务 | 2021年11月,使用C-130型运输机成功投放、回收“小精灵”无人机 |
低成本无人机集群(LOCUST) | 2015年 | 低成本、体积小、数量多、可快速释放的无人机集群 | 2021年7月,“郊狼”无人机成功击落由10架无人机组成的集群 |
进攻性蜂群使能战(OFFSET) | 2017年 | 开发无人机集群战术,提高地面部队在城市环境下作战效能 | 2020年9月,成功测试了无人机与无人车的集群协同 |
“超级蜂群 (Super Swarm)” | 2020年 | 建造、部署和控制上万架规模的无人机集群系统 | 2022年4月,美国海军“无人系统综合战斗问题21”演习中,运用“超级蜂群”摧毁水面舰艇 |
自主多域自适应集群(AMASS) | 2022年 | 开发通用指挥控制系统、架构、标准和接口,集群自主通信并执行特定任务 | 暂无 |
1 | WAN Y T, ZHONG Y F, MA A L, et al. An accurate UAV 3-D path planning method for disaster emergency response based on an improved multiobjective swarm intelligence algorithm[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2658-2671. |
2 | WU H S, LI H, XIAO R B. A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation[J]. Journal of Systems Engineering and Electronics, 2021, 32(5): 1180-1199. |
3 | 张岱峰, 段海滨, 范彦铭. 仿狼群狩猎空间交互机制的无人机集群合围控制[J]. 中国科学: 技术科学, 2022, 52(10): 1555-1570. |
ZHANG D F, DUAN H B, FAN Y M. UAV swarm containment control inspired by spatial interaction mechanism of wolf-pack foraging[J]. Scientia Sinica (Technologica), 2022, 52(10): 1555-1570 (in Chinese). | |
4 | PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms[J]. Neural Computing and Applications, 2022, 34(1): 153-170. |
5 | 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. |
JIA G W, WANG J F. Research review of UAV swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111 (in Chinese). | |
6 | FABRA F, VEGNI A M, LOSCRÍ V, et al. Collision-free cooperative unmanned aerial vehicle protocols for sustainable aerial services[J]. IET Smart Cities, 2022, 4(4): 231-238. |
7 | MEHTA A. Pentagon launches 103 unit drone swa-rm[EB/OL]. (2017-01-17)[2023-12-06]. . |
8 | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
LIU L, LIU D W, WANG X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
9 | DEFENSE D O. Autonomous multi-domain adaptiv-e swarms-of-swarms (AMASS)[EB/OL]. (2022-11-28)[2023-12-06]. . |
10 | 李磊, 王彤, 胡勤莲, 等. DARPA拒止环境中协同作战项目白军网络研究[J]. 航天电子对抗, 2018, 34(6): 54-59. |
LI L, WANG T, HU Q L, et al. White force network in DARPA CODE program[J]. Aerospace Electronic Warfare, 2018, 34(6): 54-59 (in Chinese). | |
11 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
12 | HE H X, DUAN H B. A multi-strategy pigeon-inspired optimization approach to active disturbance rejection control parameters tuning for vertical take-off and landing fixed-wing UAV[J]. Chinese Journal of Aeronautics, 2022, 35(1): 19-30. |
13 | LIU X H, ZHANG Y, DUAN H B. Unmanned aerial vehicle cargo delivery assignment via time-varying constriction pigeon-inspired optimization with memory retrospection[C]∥2023 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2023: 537-542. |
14 | YUAN G S, XIA J, DUAN H B. A continuous modeling method via improved pigeon-inspired optimization for wake vortices in UAVs close formation flight[J]. Aerospace Science and Technology, 2022, 120: 107259. |
15 | YUAN Y, DENG Y M, LUO S D, et al. Hybrid formation control framework for solar-powered quadrotors via adaptive fission pigeon-inspired optimization[J]. Aerospace Science and Technology, 2022, 126: 107564. |
16 | DUAN H B, HUO M Z, YANG Z Y, et al. Predator-prey pigeon-inspired optimization for UAV ALS longitudinal parameters tuning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(5): 2347-2358. |
17 | DUAN H B, XIN L, XU Y, et al. Eagle-vision-inspired visual measurement algorithm for uav’s autonomous landing[J]. International Journal of Robotics and Automation, 2020, 35(2): 94-100. |
18 | DUAN H B, XU X B, DENG Y M, et al. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3368-3382. |
19 | HUO M Z, DUAN H B, HE H X, et al. Data-driven parameter estimation for VTOL UAV using opposition-based pigeon-inspired optimization algorithm[C]∥2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2021: 669-674. |
20 | QIU H X, DUAN H B. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles[J]. Information Sciences, 2020, 509: 515-529. |
21 | 禹明刚, 陈瑾, 何明, 等. 基于演化博弈的社团网络无人集群协同机制[J]. 中国科学: 技术科学, 2023, 53(2): 221-242. |
YU M G, CHEN J, HE M, et al. Cooperative evolution mechanism of multiclustered unmanned swarm on community networks[J]. Scientia Sinica (Technologica), 2023, 53(2): 221-242 (in Chinese). | |
22 | 张婷婷, 宋爱国, 蓝羽石. 集群无人系统自适应结构建模与预测[J]. 中国科学: 信息科学, 2020, 50(3): 347-362. |
ZHANG T T, SONG A G, LAN Y S. Adaptive structure modeling and prediction for swarm unmanned system[J]. Scientia Sinica (Informationis), 2020, 50(3): 347-362 (in Chinese). | |
23 | 孙佳琛, 王金龙, 陈瑾, 等. 群体智能协同通信: 愿景、模型和关键技术[J]. 中国科学: 信息科学, 2020, 50(3): 307-317. |
SUN J C, WANG J L, CHEN J, et al. Cooperative communication based on swarm intelligence: Vision, model, and key technology[J]. Scientia Sinica (Informationis), 2020, 50(3): 307-317 (in Chinese). | |
24 | LONG X Q, GAO F. Cooperative attack based on small-unit UAV swarms formation with trajectory tracking[J]. Journal of Intelligent & Fuzzy Systems, 2023, 45(2): 2949-2965. |
25 | WANG Z Q, LI J, LI J, et al. A decentralized decision-making algorithm of UAV swarm with information fusion strategy[J]. Expert Systems with Applications, 2024, 237: 121444. |
26 | GAO Y, LI D S. Unmanned aerial vehicle swarm distributed cooperation method based on situation awareness consensus and its information processing mechanism[J]. Knowledge-Based Systems, 2020, 188: 105034. |
27 | HAI X S, QIU H X, WEN C Y, et al. A novel distributed situation awareness consensus approach for UAV swarm systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 14706-14717. |
28 | LIZZIO F F, CAPELLO E, GUGLIERI G. A review of consensus-based multi-agent UAV implementations[J]. Journal of Intelligent & Robotic Systems, 2022, 106(2): 43. |
29 | WANG T Q, ZHAO S H, XIA Y Q, et al. Consensus control of large-scale UAV swarm based on multi-layer graph[J]. Drones, 2022, 6(12): 402. |
30 | BAI C C, YAN P, PIAO H Y, et al. Learning-based multi-UAV flocking control with limited visual field and instinctive repulsion[J]. IEEE Transactions on Cybernetics, 2024, 54(1): 462-475. |
31 | HE T, WANG L. Neural network-based velocity-controllable UAV flocking[J]. The Aeronautical Journal, 2023, 127(1308): 289-304. |
32 | WU J H, YU Y Z, MA J, et al. Autonomous cooperative flocking for heterogeneous unmanned aerial vehicle group[J]. IEEE Transactions on Vehicular Technology, 2021, 70(12): 12477-12490. |
33 | YAN P, BAI C C, ZHENG H X, et al. Flocking control of UAV swarms with deep reinforcement leaming approach[C]∥2020 3rd International Conference on Unmanned Systems (ICUS). Piscataway: IEEE Press, 2020: 592-599. |
34 | HU J Y, NIU H L, CARRASCO J, et al. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring[J]. Aerospace Science and Technology, 2022, 123: 107494. |
35 | WANG H B, CHEN M, FU P. A distributed fault-tolerant mechanism for mission-oriented unmanned aerial vehicle swarms[J]. International Journal of Communication Systems, 2021, 34(8): e4789. |
36 | WU X J, JIN Y T, ZHEN R. Fault-tolerant time-varying formation tracking control for unmanned aerial vehicle swarm systems with switching topologies and a leader of unknown control input[C]∥2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS). Piscataway: IEEE Press, 2021: 265-270. |
37 | ZHAO T F, SONG S Y. A fault-tolerant topology control algorithm for wireless ultraviolet light covert communication network in cluster UAV[J]. Photonic Network Communications, 2021, 42(1): 40-48. |
38 | LEE S M, SHIN M, SON H. Robust predictor-based control for multirotor UAV with various time delays[J]. IEEE Transactions on Industrial Electronics, 2023, 70(8): 8151-8162. |
39 | ZHAI W B, LIU L, DING Y W, et al. ETD: An efficient time delay attack detection framework for UAV networks[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2913-2928. |
40 | DONG Q, LIU Z B. Formation control for unmanned aerial vehicle swarm with disturbances: A mission-driven control scheme[J]. Optimal Control Applications and Methods, 2023, 44(3): 1441-1462. |
41 | RAN M P, LI J C, XIE L H. Active disturbance rejection time-varying formation tracking for unmanned aerial vehicles[C]∥2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). Piscataway: IEEE Press, 2020: 1298-1303. |
42 | ZHANG J L, ZHANG P, YAN J G. Distributed adaptive finite-time compensation control for UAV swarm with uncertain disturbances[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68(2): 829-841. |
43 | TANG J, DUAN H B, LAO S Y. Swarm intelligence algorithms for multiple unmanned aerial vehicles collaboration: A comprehensive review[J]. Artificial Intelligence Review, 2023, 56(5): 4295-4327. |
44 | HU J W, WANG T, ZHANG H Z, et al. A review of rule-based collision avoidance technology for autonomous UAV[J]. Science China Technological Sciences, 2023, 66(9): 2481-2499. |
45 | LUO L B, WANG X Y, MA J F, et al. GrpAvoid: Multigroup collision-avoidance control and optimization for UAV swarm[J]. IEEE Transactions on Cybernetics, 2023, 53(3): 1776-1789. |
46 | DENTLER J, ROSALIE M, DANOY, G, et al. Collision avoidance effects on the mobility of a UAV swarm using chaotic ant colony with model predictive control[J]. Journal of Intelligent & Robotic Systems, 2019, 93: 227-243. |
47 | FU X W, ZHI C Y, WU D. Obstacle avoidance and collision avoidance of UAV swarm based on improved VFH algorithm and information sharing strategy[J]. Computers & Industrial Engineering, 2023, 186: 109761. |
48 | PAN H Y, LIU Y H, SUN G, et al. Joint power and 3D trajectory optimization for UAV-enabled wireless powered communication networks with obstacles[J]. IEEE Transactions on Communications, 2023, 71(4): 2364-2380. |
49 | PUENTE-CASTRO A, RIVERO D, PEDROSA E, et al. Q-Learning based system for path planning with unmanned aerial vehicles swarms in obstacle environments[J]. Expert Systems with Applications, 2024, 235: 121240. |
50 | HE W J, QI X G, LIU L F. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning[J]. Applied Intelligence, 2021, 51(10): 7350-7364. |
51 | LU C, LV Y T, SU Y Z, et al. UAV swarm collaborative path planning based on RB-ABC[C]∥2022 9th International Forum on Electrical Engineering and Automation (IFEEA). Piscataway: IEEE Press, 2022: 627-632. |
52 | PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. UAV swarm path planning with reinforcement learning for field prospecting[J]. Applied Intelligence, 2022, 52(12): 14101-14118. |
53 | SAEED R A, OMRI M, ABDEL-KHALEK S, et al. Optimal path planning for drones based on swarm intelligence algorithm[J]. Neural Computing and Applications, 2022, 34(12): 10133-10155. |
54 | MA Z Y, CHEN J. Adaptive path planning method for UAVs in complex environments[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 115: 103133. |
55 | XIAO T L, YANG Q, GAO X D, et al. Variation encoded large-scale swarm optimizers for path planning of unmanned aerial vehicle[C]∥Genetic and Evolutionary Computation Conference. New York: ACM, 2023: 102-110. |
56 | XU L, CAO X B, DU W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260: 110164. |
57 | HUA X, WANG Z, YAO H J, et al. Research on many-to-many target assignment for unmanned aerial vehicle swarm in three-dimensional scenarios[J]. Computers & Electrical Engineering, 2021, 91: 107067. |
58 | LI Y, XU Y, XUE X Y, et al. Optimal spraying task assignment problem in crop protection with multi-UAV systems and its order irrelevant enumeration solution[J]. Biosystems Engineering, 2022, 214: 177-192. |
59 | LIU B, WANG S L, LI Q H, et al. Task assignment of UAV swarms based on deep reinforcement learning[J]. Drones, 2023, 7(5): 297. |
60 | WANG Z H, ZHANG J L. A task allocation algorithm for a swarm of unmanned aerial vehicles based on bionic wolf pack method[J]. Knowledge-Based Systems, 2022, 250: 109072. |
61 | WU Y, LIANG T J, GOU J Z, et al. Heterogeneous mission planning for multiple UAV formations via metaheuristic algorithms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3924-3940. |
62 | WUBBEN J, HERNÁNDEZ D, CECILIA J M, et al. Assignment and take-off approaches for large-scale autonomous UAV swarms[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 4836-4847. |
63 | GAO C Y, MA J F, LI T, et al. Hybrid swarm intelligent algorithm for multi-UAV formation reconfiguration[J]. Complex & Intelligent Systems, 2023, 9(2): 1929-1962. |
64 | LI B, ZHANG J W, DAI L, et al. A hybrid offline optimization method for reconfiguration of multi-UAV formations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 506-520. |
65 | LIU H X, LIU F, ZHANG X J, et al. A formation reconfiguration algorithm for multi-UAVs based on distributed cooperative coevolutionary with an adaptive grouping strategy[J]. Chinese Journal of Electronics, 2020, 29(5): 841-851. |
66 | WUBBEN J, AZNAR P, FABRA F, et al. Toward secure, efficient, and seamless reconfiguration of UAV swarm formations[C]∥2020 IEEE/ACM 24th International Symposium on Distributed Simulation and Real Time Applications (DS-RT). Piscataway: IEEE Press, 2020: 1-7. |
67 | WUBBEN J, FABRA F, CALAFATE C T, et al. A novel resilient and reconfigurable swarm management scheme[J]. Computer Networks, 2021, 194: 108119. |
68 | CHEN H T, HE M, LIU J T, et al. A novel fractional-order flocking algorithm for large-scale UAV swarms[J]. Complex & Intelligent Systems, 2023, 9(6): 6831-6844. |
69 | YAN C, XIANG X J, WANG C, et al. PASCAL: Population-specific curriculum-based MADRL for collision-free flocking with large-scale fixed-wing UAV swarms[J]. Aerospace Science and Technology, 2023, 133: 108091. |
70 | WANG W, WANG L, WU J F, et al. Oracle-guided deep reinforcement learning for large-scale multi-UAVs flocking and navigation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(10): 10280-10292. |
71 | PAN Z H, XIA Y Q, SUN Z Q, et al. Multilayer self-organized aggregation control for large-scale unmanned aerial vehicle swarms[J]. International Journal of Robust and Nonlinear Control, 2023, 33(10): 5420-5436. |
72 | VIRÁGH C, VÁSÁRHELYI G, TARCAI N, et al. Flocking algorithm for autonomous flying robots[J]. Bioinspiration & Biomimetics, 2014, 9(2): 025012. |
73 | YONG E. Autonomous drones flock like birds[EB/OL]. (2014-2-26)[2023-12-06]. . |
74 | VÁSÁRHELYI G, VIRÁGH C, SOMORJAI G, et al. Optimized flocking of autonomous drones in confined environments[J]. Science Robotics, 2018, 3(20): eaat3536. |
75 | ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild[J]. Science Robotics, 2022, 7(66): eabm5954. |
76 | 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018: 13-23. |
DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing: Science Press, 2018: 13-23 (in Chinese). | |
77 | NAGY M, ÁKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464: 890-893. |
78 | ZHANG H T, CHEN Z Y, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific Reports, 2014, 4: 5805. |
79 | CHEN D X, VICSEK T, LIU X L, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics Letters), 2016, 114(6): 60008. |
80 | CHEN D X, WANG Y C, WU G, et al. Inferring causal relationship in coordinated flight of pigeon flocks[J]. Chaos, 2019, 29(11): 113118. |
81 | FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal Behaviour, 2012, 83(3): 703-709. |
82 | FLACK A, ÁKOS Z, NAGY M, et al. Robustness of flight leadership relations in pigeons[J]. Animal Behaviour, 2013, 86(4): 723-732. |
83 | LIU X Y, YAN C, ZHOU H, et al. Towards flocking navigation and obstacle avoidance for multi-UAV systems through hierarchical weighting vicsek model[J]. Aerospace, 2021, 8(10): 286. |
84 | LIU X Y, XIANG X J, CHANG Y, et al. Hierarchical weighting vicsek model for flocking navigation of drones[J]. Drones, 2021, 5(3): 74. |
85 | PETTIT B, ÁKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current Biology, 2015, 25(23): 3132-3137. |
86 | SASAKI T, BIRO D. Cumulative culture can emerge from collective intelligence in animal groups[J]. Nature Communications, 2017, 8: 15049. |
87 | SASAKI T, MANN R P, WARREN K N, et al. Personality and the collective: Bold homing pigeons occupy higher leadership ranks in flocks[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2018, 373(1746): 20170038. |
88 | CUCKER F, SMALE S. Emergent behavior in flocks[J]. IEEE Transactions on Automatic Control, 2007, 52(5): 852-862. |
89 | EVANGELISTA D J, RAY D D, RAJA S K, et al. Three-dimensional trajectories and network analyses of group behaviour within chimney swift flocks during approaches to the roost[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1849): 20162602. |
90 | BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(4): 1232-1237. |
91 | CAVAGNA A, CIMARELLI A, GIARDINA I, et al. From empirical data to inter-individual interactions: Unveiling the rules of collective animal behavior[J]. Mathematical Models and Methods in Applied Sciences, 2010, 20(supp01): 1491-1510. |
92 | CAMPERI M, CAVAGNA A, GIARDINA I, et al. Spatially balanced topological interaction grants optimal cohesion in flocking models[J]. Interface Focus, 2012, 2(6): 715-725. |
93 | SHANG Y L, BOUFFANAIS R. Influence of the number of topologically interacting neighbors on swarm dynamics[J]. Scientific Reports, 2014, 4: 4184. |
94 | CHEN C, CHEN G, GUO L. Consensus of flocks under M-nearest-neighbor rules[J]. Journal of Systems Science and Complexity, 2015, 28(1): 1-15. |
95 | WANG L, CHEN G R. Synchronization of multi-agent systems with metric-topological interactions[J]. Chaos, 2016, 26(9): 094809. |
96 | KUMAR V, DE R M. Efficient flocking: Metric versus topological interactions[J]. Royal Society Open Science, 2021, 8(9): 202158. |
97 | LIU J T, HE M, XU P, et al. Pairwise control in swarm flocking with application to UAVs[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105023. |
98 | LING H J, MCLVOR G E, VAN DER VAART K, et al. Costs and benefits of social relationships in the collective motion of bird flocks[J]. Nature Ecology & Evolution, 2019, 3: 943-948. |
99 | LING H J, MCLVOR G E, WESTLEY J, et al. Behavioural plasticity and the transition to order in jackdaw flocks[J]. Nature Communications, 2019, 10: 5174. |
100 | ANDERSSON M, WALLANDER J. Kin selection and reciprocity in flight formation?[J]. Behavioral Ecology, 2004, 15(1): 158-162. |
101 | BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal Behaviour, 2009, 78(4): 777-789. |
102 | LISSAMAN P B, SHOLLENBERGER C A. Formation flight of birds[J]. Science, 1970, 168(3934): 1003-1005. |
103 | WEIMERSKIRCH H, MARTIN J, CLERQUIN Y, et al. Energy saving in flight formation[J]. Nature, 2001, 413: 697-698. |
104 | REYNOLDS C W. Flocks, herds and schools: A distributed behavioral model[C]∥Proceedings of the 14th annual conference on Computer graphics and interactive techniques. New York: ACM, 1987: 25-34. |
105 | VICSEK T, CZIRÓK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6): 1226-1229. |
106 | COUZIN I D, KRAUSE J, JAMES R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218(1): 1-11. |
107 | WANG X, LU J H. Collective behaviors through social interactions in bird flocks[J]. IEEE Circuits and Systems Magazine, 2019, 19(3): 6-22. |
108 | ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Information transfer and behavioural inertia in starling flocks[J]. Nature Physics, 2014, 10: 691-696. |
109 | LING H J, MCLVOR G E, WESTLEY J, et al. Collective turns in jackdaw flocks: Kinematics and information transfer[J]. Journal of the Royal Society, Interface, 2019, 16(159): 20190450. |
110 | PAPADOPOULOU M, HILDENBRANDT H, SANKEY D W E, et al. Emergence of splits and collective turns in pigeon flocks under predation[J]. Royal Society Open Science, 2022, 9(2): 211898. |
111 | 邱华鑫, 段海滨. 从鸟群群集飞行到无人机自主集群编队[J]. 工程科学学报, 2017, 39(3): 317-322. |
QIU H X, DUAN H B. From collective flight in bird flocks to unmanned aerial vehicle autonomous swarm formation[J]. Chinese Journal of Engineering, 2017, 39(3): 317-322 (in Chinese). | |
112 | WANG X, CHEN H, ZHAO S. Formation control of large-scale fixed-wing unmanned aerial vehicle swarms[J]. Control and Decision, 2021, 36(9): 2063-2073. |
113 | CHEN H, WANG X K, SHEN L C, et al. Formation flight of fixed-wing UAV swarms: A group-based hierarchical approach[J]. Chinese Journal of Aeronautics, 2021, 34(2): 504-515. |
114 | ZHAO J, SUN J M, CAI Z H, et al. Distributed coordinated control scheme of UAV swarm based on heterogeneous roles[J]. Chinese Journal of Aeronautics, 2022, 35(1): 81-97. |
115 | XU X P, YAN X T, YANG W Y, et al. Algorithms and applications of intelligent swarm cooperative control: A comprehensive survey[J]. Progress in Aerospace Sciences, 2022, 135: 100869. |
116 | WU J, LUO C B, LUO Y, et al. Distributed UAV swarm formation and collision avoidance strategies over fixed and switching topologies[J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10969-10979. |
117 | XIONG H, DING Y Z, LIU J Z. Compact and ordered swarms of unmanned aerial vehicles in cluttered environments[J]. Bioinspiration & Biomimetics, 2023, 18(5): 056006. |
118 | LIAO J, CHENG J, XIN B, et al. UAV swarm formation reconfiguration control based on variable-stepsize MPC-APCMPIO algorithm[J]. Science China Information Sciences, 2023, 66(11): 212207. |
119 | WU J F, WANG H L, LI N, et al. Formation obstacle avoidance: A fluid-based solution[J]. IEEE Systems Journal, 2020, 14(1): 1479-1490. |
120 | SARKAR N, DEB A K. Neuroadaptive distributed sliding mode formation control of UAVs: A more simple approach[J]. International Journal of Control, Automation and Systems, 2023, 21(10): 3470-3483. |
121 | LIU W H, ZHENG X, DENG Z H. Dynamic collision avoidance for cooperative fixed-wing UAV swarm based on normalized artificial potential field optimization[J]. Journal of Central South University, 2021, 28(10): 3159-3172. |
122 | ZHEN Z Y, CHEN Y, WEN L D, et al. An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment[J]. Aerospace Science and Technology, 2020, 100: 105826. |
123 | LIU Y P, ZHAO X, XU J, et al. Rapid location technology of odor sources by multi-UAV[J]. Journal of Field Robotics, 2022, 39(5): 600-616. |
124 | 邱华鑫, 段海滨, 范彦铭. 基于鸽群行为机制的多无人机自主编队[J]. 控制理论与应用, 2015, 32(10): 1298-1304. |
QIU H X, DUAN H B, FAN Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory & Applications, 2015, 32(10): 1298-1304 (in Chinese). | |
125 | LUO Q N, DUAN H B. Distributed UAV flocking control based on homing pigeon hierarchical strategies[J]. Aerospace Science and Technology, 2017, 70: 257-264. |
126 | SHEN Y K, WEI C. Multi-UAV flocking control with individual properties inspired by bird behavior[J]. Aerospace Science and Technology, 2022, 130: 107882. |
127 | QIU H X, DUAN H B. Multiple UAV distributed close formation control based on in-flight leadership hierarchies of pigeon flocks[J]. Aerospace Science and Technology, 2017, 70: 471-486. |
128 | QIU H X, DUAN H B. Pigeon interaction mode switch-based UAV distributed flocking control under obstacle environments[J]. ISA Transactions, 2017, 71: 93-102. |
129 | FENG Y F, DONG J S, WANG J L, et al. Distributed flocking algorithm for multi-UAV system based on behavior method and topological communication[J]. Journal of Bionic Engineering, 2023, 20(2): 782-796. |
130 | KONG W R, ZHOU D Y, DU Y J, et al. Hierarchical multi-agent reinforcement learning for multi-aircraft close-range air combat[J]. IET Control Theory & Applications, 2023, 17(13): 1840-1862. |
131 | 张令, 段海滨, 雍婷, 等. 基于寒鸦配对交互行为的无人机集群编队控制[J]. 北京航空航天大学学报, 2021, 47(2): 391-397. |
ZHANG L, DUAN H B, YONG T, et al. Unmanned aerial vehicle swarm formation control based on paired interaction mechanism in jackdaws[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(2): 391-397 (in Chinese). | |
132 | PACHTER M, D’AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 246-254. |
133 | 周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学: 技术科学, 2017, 47(3): 230-238. |
ZHOU Z W, DUAN H B, FAN Y M. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica (Technologica), 2017, 47(3): 230-238 (in Chinese). | |
134 | 丁应和, 沈凯, 朱毅晓, 等. 仿雁群多固定翼无人机时变编队一致性控制方法[J]. 战术导弹技术, 2022(4): 132-138, 148. |
DING Y H, SHEN K, ZHU Y X, et al. Method of time-varying formation consistency control for multiple fixed-wing UAVs[J]. Tactical Missile Technology, 2022(4): 132-138, 148 (in Chinese). | |
135 | OUYANG Q, WU Z X, CONG Y H, et al. Formation control of unmanned aerial vehicle swarms: A comprehensive review[J]. Asian Journal of Control, 2023, 25(1): 570-593. |
136 | OLFATI-SABER R. Flocking for multi-agent dynamic systems: Algorithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420. |
137 | BEAVER L E, MALIKOPOULOS A A. An overview on optimal flocking[J]. Annual Reviews in Control, 2021, 51: 88-99. |
138 | POOLEY A, GAO M, SHARMA A, et al. Analysis of UAV thermal soaring via hawk-inspired swarm interaction[J]. Biomimetics, 2023, 8(1): 124. |
139 | WU W H, ZHANG X Y, MIAO Y. Starling-behavior-inspired flocking control of fixed-wing unmanned aerial vehicle swarm in complex environments with dynamic obstacles[J]. Biomimetics, 2022, 7(4): 214. |
140 | LIU W, GAO Z J. A distributed flocking control strategy for UAV groups[J]. Computer Communications, 2023, 153: 95-101. |
141 | 于月平, 段海滨, 范彦铭, 等. 仿欧椋鸟大规模超机动行为的无人机集群转弯控制[J]. 机器人, 2020, 42(4): 385-393. |
YU Y P, DUAN H B, FAN Y M, et al. Turning control of multiple UAVs imitating the super-maneuver behavior in massive starlings[J]. Robot, 2020, 42(4): 385-393 (in Chinese). | |
142 | CAVAGNA A, DEL CASTELLO L, GIARDINA I, et al. Flocking and turning: A new model for self-organized collective motion[J]. Journal of Statistical Physics, 2015, 158(3): 601-627. |
143 | CRISTIANI E, MENCI M, PAPI M, et al. An all-leader agent-based model for turning and flocking birds[J]. Journal of Mathematical Biology, 2021, 83(4): 45. |
144 | CAVAGNA A, GIARDINA I. Bird flocks as condensed matter[J]. Annual Review of Condensed Matter Physics, 2014, 5: 183-207. |
145 | ATTANASI A, CAVAGNA A, DEL CASTELLO L, et al. Emergence of collective changes in travel direction of starling flocks from individual birds’ fluctuations[J]. Journal of the Royal Society Interface, 2015, 12(108): 20150319. |
146 | STORMS R F, CARERE C, ZORATTO F, et al. Complex patterns of collective escape in starling flocks under predation[J]. Behavioral Ecology and Sociobiology, 2019, 73(1): 10. |
147 | BASTIEN R, ROMANCZUK P. A model of collective behavior based purely on vision [J]. Science Advances, 2020, 6: eaay0792. |
148 | QI J T, BAI L, WEI Y M, et al. Emergence of adaptation of collective behavior based on visual perception[J]. IEEE Internet of Things Journal, 2023, 10(12): 10368-10384. |
149 | XIE H, SUN M M, FAN X J, et al. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation[J]. Science Robotics, 2019, 4(28): eaav8006. |
150 | NAVE G K Jr, MITCHELL N T, CHAN DICK J A, et al. Attraction, dynamics, and phase transitions in fire ant tower-building[J]. Frontiers in Robotics and AI, 2020, 7: 25. |
151 | WANG G, PHAN T V, LI S K, et al. Emergent field-driven robot swarm states[J]. Physical Review Letters, 2021, 126(10): 108002. |
152 | BERLINGER F, GAUCI M, NAGPAL R. Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm[J]. Science Robotics, 2021, 6(50): eabd8668. |
153 | HAO Z J, MAYYA S, NOTOMISTA G, et al. Controlling collision-induced aggregations in a swarm of micro bristle robots[J]. IEEE Transactions on Robotics, 2023, 39(1): 590-604. |
[1] | 王传云, 苏阳, 王琳霖, 王田, 王静静, 高骞. 面向反制无人机集群的多目标连续鲁棒跟踪算法[J]. 航空学报, 2024, 45(7): 329017-329017. |
[2] | 蔡云鹏, 周大鹏, 丁江川. 具有防撞安全约束的无人机集群智能协同控制[J]. 航空学报, 2024, 45(5): 529683-529683. |
[3] | 刘海春, 李阳, 谢少军. 基于极性转换的航空交直流共地整流电源[J]. 航空学报, 2024, 45(13): 329539-329539. |
[4] | 陈宁立, 易贤, 王强, 任靖豪. NNW⁃ICE软件的三维结冰模型及精度验证[J]. 航空学报, 2024, 45(12): 129188-129188. |
[5] | 刘伟, 张琳, 王代强, 孟宪良, 张搏. 激光武器反无人机集群作战运用及关键技术[J]. 航空学报, 2024, 45(12): 329457-329457. |
[6] | 张清瑞, 刘赟韵, 孙慧杰, 朱波. 固定翼无人机紧密编队的鲁棒协同跟踪控制[J]. 航空学报, 2024, 45(1): 629233-629233. |
[7] | 张国渊, 黎旭康, 赵伟刚, 赵洋洋, 王俊倩. 低温高速动静结合型机械密封两相流仿真与实验[J]. 航空学报, 2023, 44(23): 628229-628229. |
[8] | 马乙楗, 柴得林, 易贤, 屈经国, 王强. 考虑侵蚀效应的冰晶/混合相结冰计算方法[J]. 航空学报, 2023, 44(15): 528609-528609. |
[9] | 文超, 董文瀚, 解武杰, 蔡鸣, 刘日. 基于回访机制的无人机集群分布式协同区域搜索方法[J]. 航空学报, 2023, 44(11): 327561-327561. |
[10] | 许闯, 吴宝林. 输入饱和下多航天器分布式固定时间输出反馈姿态协同控制[J]. 航空学报, 2023, 44(10): 327465-327465. |
[11] | 刘雷, 刘大卫, 王晓光, 陈俊男, 刘东兴. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908-726908. |
[12] | 苏翎菲, 化永朝, 董希旺, 任章. 人与无人机集群多模态智能交互方法[J]. 航空学报, 2022, 43(S1): 727001-727001. |
[13] | 徐广通, 王祝, 曹严, 孙景亮, 龙腾. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2): 325059-325059. |
[14] | 向锦武, 董希旺, 丁文锐, 索津莉, 沈林成, 夏辉. 复杂环境下无人集群系统自主协同关键技术[J]. 航空学报, 2022, 43(10): 527570-527570. |
[15] | 叶结松, 龚柏春, 李爽, 都延丽, 郝明瑞. 基于相对方位信息和单间距测量的多智能体编队协同控制[J]. 航空学报, 2021, 42(7): 324610-324610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学