[1] 邹立岩, 张明智, 武剑. 面向体系仿真的智能无人机集群作战建模总体框架研究[J]. 军事运筹与系统工程, 2021, 35(1):64-72. ZOU L Y, ZHANG M Z, WU J. A study on the general framework of intelligent UAS swarm operation modeling oriented on so S simulation[J]. Military Operations Research and Systems Engineering, 2021, 35(1):64-72 (in Chinese). [2] 张青春, 张兴. 基于DoDAF的C2BMC系统体系结构建模[J]. 指挥信息系统与技术, 2019, 10(3):50-56. ZHANG Q C, ZHANG X. Architecture modeling for C2BMC system based on DoDAF[J]. Command Information System and Technology, 2019, 10(3):50-56 (in Chinese). [3] 刘翔宇, 姜海洋, 赵洪利, 等. 基于DODAF-OODA的天基信息支援作战视图研究[J]. 兵器装备工程学报, 2019, 40(2):33-38. LIU X Y, JIANG H Y, ZHAO H L, et al. Research on OV of air precision striking operation with space information support based on DODAF-OODA[J]. Journal of Ordnance Equipment Engineering, 2019, 40(2):33-38 (in Chinese). [4] 戎光, 刘新发, 夏惠诚. 基于DoDAF的大型舰艇编队防空反导系统作战体系结构[J]. 舰船电子对抗, 2012, 35(6):22-25, 39. RONG G, LIU X F, XIA H C. Operation architecture of air defense and anti-missile system of large warship formation based on DoDAF[J]. Shipboard Electronic Countermeasure, 2012, 35(6):22-25, 39 (in Chinese). [5] 王洪胜, 禹大勇, 曲延明. 基于DoDAF的舰载弹炮结合防空武器系统模型[J]. 兵工自动化, 2014, 33(5):28-31, 46. WANG H S, YU D Y, QU Y M. Shipboard missile Gun integrated air-defense weapon system model based on DoDAF[J]. Ordnance Industry Automation, 2014, 33(5):28-31, 46 (in Chinese). [6] DARPA. System of Systems Integration Technology and Experimentation (SoSITE)[EB/OL]. (2016-10-27)[2022-06-04]. https://www.darpa.mil/program/sytem-of-sytem-integration-technology-and-experimention. [7] DARPA. Collaborative Operations in Denied Environment (CODE)[EB/OL]. (2018-11-28)[2022-06-04].https://www.darpa.mil/program/collaborative-opertions-in-denied-environment. [8] DARPA. Distributed Battle Management (DBM)[EB/OL]. (2018-02-13)[2022-06-04]. https://www.darpa.mil/program/distributed-battle-management. [9] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京:科学出版社, 2018. DUAN H B, QIU H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing:Science Press, 2018 (in Chinese). [10] WANG X K, SHEN L C, LIU Z H, et al. Coordinated flight control of miniature fixed-wing UAV swarms:Methods and experiments[J]. Science China Information Sciences, 2019, 62(11):212204. [11] 段海滨, 申燕凯, 王寅, 等. 2018年无人机领域热点评述[J]. 科技导报, 2019, 37(3):82-90. DUAN H B, SHEN Y K, WANG Y, et al. Review of technological hot spots of unmanned aerial vehicle in 2018[J]. Science & Technology Review, 2019, 37(3):82-90 (in Chinese). [12] DONG Y X. Research on effectiveness evaluation methods[M]. Beijing:National Defense Industry Press, 2009:140-145. [13] 燕雪峰, 张德平, 黄晓冬. 面向任务的体系效能评估[M]. 北京:电子工业出版社, 2020. YAN X F, ZHANG D P, HUANG X D. Mission oriented effectiveness evaluation and optimization of system of systems[M]. Beijing:Publishing House of Electronics Industry, 2020 (in Chinese). [14] 李坎. 对地攻击型无人机群协同作战效能分析[J]. 指挥控制与仿真, 2017, 39(6):63-68. LI K. Effectiveness analysis of cooperative engagement for the ground attack Unmanned Aerial Vehicles (UAVs)[J]. Command Control & Simulation, 2017, 39(6):63-68 (in Chinese). [15] 屈高敏, 董彦非, 岳源. 对地攻击型无人机作战效能评估[J]. 火力与指挥控制, 2016, 41(4):145-149. QU G M, DONG Y F, YUE Y. Operational effectiveness evaluation of ground attack UCAV[J]. Fire Control & Command Control, 2016, 41(4):145-149 (in Chinese). [16] 黄吉传, 周德云. 无人机协同作战效能评估指标体系设计与分析[J]. 西安工业大学学报, 2020, 40(1):38-44. HUANG J C, ZHOU D Y. Design and analysis of an evaluation index system for UAV cooperative combat effectiveness[J]. Journal of Xi'an Technological University, 2020, 40(1):38-44 (in Chinese). [17] 陈侠, 胡乃宽. 基于APSO-BP神经网络的无人机空地作战效能评估研究[J]. 飞行力学, 2018, 36(1):88-92. CHEN X, HU N K. Research on effectiveness evaluation of UAV air-to-ground attack based on APSO-BP neural network[J]. Flight Dynamics, 2018, 36(1):88-92 (in Chinese). [18] 陈亮. 体系作战条件无人机作战效能评估模型[J]. 舰船电子工程, 2016, 36(7):124-127, 160. CHEN L. UAV operational effectiveness evaluation model in system combat[J]. Ship Electronic Engineering, 2016, 36(7):124-127, 160 (in Chinese). [19] 齐智敏, 张海林, 伊山, 等. 智能无人机群体作战效能评估指标体系研究[J]. 舰船电子工程, 2021, 41(9):1-5. QI Z M, ZHANG H L, YI S, et al. Research on the index system of intelligent UAV group combat effectiveness evaluation[J]. Ship Electronic Engineering, 2021, 41(9):1-5 (in Chinese). [20] 祝学军, 赵长见, 梁卓, 等. OODA智能赋能技术发展思考[J]. 航空学报, 2021, 42(4):524332. ZHU X J, ZHAO C J, LIANG Z, et al. Thoughts on technology development of OODA empowered with AI[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524332 (in Chinese). [21] SHI J J, REN M R, WANG P, et al. Research on PF-SLAM indoor pedestrian localization algorithm based on feature point map[J]. Micromachines, 2018, 9(6):267. [22] WEN W S, HSU L T, ZHANG G H. Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong[J]. Sensors, 2018, 18(11):3928. [23] 高宏伟, 于斌, 武炎明. 视觉SLAM的空地协同导航方法研究[J]. 沈阳理工大学学报, 2022, 41(1):7-13. GAO H W, YU B, WU Y M. Research on air-ground cooperative navigation based on VSLAM[J]. Journal of Shenyang Ligong University, 2022, 41(1):7-13 (in Chinese). [24] ATTOUI I, FERGANI N, BOUTASSETA N, et al. A new time-frequency method for identification and classification of ball bearing faults[J]. Journal of Sound and Vibration, 2017, 397:241-265. [25] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway:IEEE Press, 2015:1440-1448. [26] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:779-788. [27] ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack:multi-object tracking by associating every detection box[EB/OL]. (2022-04-07)[2022-06-04]. https://arxiv.org/abs/2110.06864. [28] CHEN C, ZHANG X L, PENG X F, et al. Multi-sensor fusion technology in inertial navigation system using factor graph[C]//2018 37th Chinese Control Conference (CCC). Piscataway:IEEE Press, 2018:4575-4580. [29] 张靖, 王向东, 邓志宝, 等. 一种基于因子图的异步信息融合定位算法[J]. 导弹与航天运载技术, 2019(3):89-95. ZHANG J, WANG X D, DENG Z B, et al. An asynchronous information fusion positioning algorithm based on factor graph[J]. Missiles and Space Vehicles, 2019(3):89-95 (in Chinese). [30] BATTISTELLI G, CHISCI L. Stability of consensus extended Kalman filtering for distributed state estimation[J]. IFAC Proceedings Volumes, 2014, 47(3):5520-5525. [31] ZHANG H, ZHOU X, WANG Z P, et al. Adaptive consensus-based distributed target tracking with dynamic cluster in sensor networks[J]. IEEE Transactions on Cybernetics, 2019, 49(5):1580-1591. [32] ZHANG C, JIA Y M. Distributed estimation for stochastic hybrid systems with event-triggered sensor schedule[J]. IET Control Theory & Applications, 2017, 11(2):173-181. [33] KAMAL A T, FARRELL J A, ROY-CHOWDHURY A K. Information weighted consensus filters and their application in distributed camera networks[J]. IEEE Transactions on Automatic Control, 2013, 58(12):3112-3125. [34] BATTISTELLI G, CHISCI L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability[J]. Automatica, 2014, 50(3):707-718. [35] VAHIDPOUR V, RASTEGARNIA A, KHALILI A, et al. Partial diffusion Kalman filtering for distributed state estimation in multiagent networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(12):3839-3846. [36] CHEN Q, YIN C, ZHOU J, et al. Hybrid consensus-based cubature Kalman filtering for distributed state estimation in sensor networks[J]. IEEE Sensors Journal, 2018, 18(11):4561-4569. [37] KLUGE S, REIF K, BROKATE M. Stochastic stability of the extended Kalman filter with intermittent observations[J]. IEEE Transactions on Automatic Control, 2010, 55(2):514-518. [38] JI H H, LEWIS F L, HOU Z S, et al. Distributed information-weighted Kalman consensus filter for sensor networks[J]. Automatica, 2017, 77:18-30. [39] ZHANG Y, SUN L C, HU G Q. Distributed consensus-based multitarget filtering and its application in formation-containment control[J]. IEEE Transactions on Control of Network Systems, 2020, 7(1):503-515. [40] LI L, YU D D, XIA Y Q, et al. Event-triggered UKF for nonlinear dynamic systems with packet dropout[J]. International Journal of Robust and Nonlinear Control, 2017, 27(18):4208-4226. [41] DONG H L, BU X Y, WANG Z D, et al. Finite-horizon distributed state estimation under randomly switching topologies and redundant channels[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2020, 50(8):2938-2947. [42] 吴亚辉, 刘春阳, 谢赛宝, 等. 基于视觉深度学习的机器人环境感知及自主避障[J]. 电子测量技术, 2021, 44(20):99-106. WU Y H, LIU C Y, XIE S B, et al. Mobile robotic perception and autonomous avoidance based on visual depth learning[J]. Electronic Measurement Technology, 2021, 44(20):99-106 (in Chinese). [43] ZHOU X, ZHU J C, ZHOU H Y, et al. EGO-swarm:A fully autonomous and decentralized quadrotor swarm system in cluttered environments[C]//2021 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2021:4101-4107. [44] PARK J, KIM J, JANG I, et al. Efficient multi-agent trajectory planning with feasibility guarantee using relative Bernstein polynomial[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:434-440. [45] ZHANG J, XING J H. Cooperative task assignment of multi-UAV system[J]. Chinese Journal of Aeronautics, 2020, 33(11):2825-2827. [46] FU Y G, DING M Y, ZHOU C P. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2012, 42(2):511-526. [47] CHEN Y B, YANG D, YU J Q. Multi-UAV task assignment with parameter and time-sensitive uncertainties using modified two-part wolf pack search algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6):2853-2872. [48] YAO J J, ANSARI N. Task allocation in fog-aided mobile IoT by Lyapunov online reinforcement learning[J]. IEEE Transactions on Green Communications and Networking, 2020, 4(2):556-565. [49] ZHAO N, YE Z Y, PEI Y Y, et al. Multi-agent deep reinforcement learning for task offloading in UAV-assisted mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2022,21(9):6949-6960. [50] WANG L, WANG K Z, PAN C H, et al. Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1):73-84. [51] ZHAO G X, ZHU M H. Scalable distributed algorithms for multi-robot near-optimal motion planning[J]. Automatica, 2022, 140:110241. [52] QUAN L, YIN L J, XU C, et al. Distributed swarm trajectory optimization for formation flight in dense environments[EB/OL]. (2022-04-21)[2022-06-04]. https://arxiv.org/abs/2109.07682. [53] ZHOU X, WANG Z P, YE H K, et al. EGO-planner:An ESDF-free gradient-based local planner for quadrotors[J]. IEEE Robotics and Automation Letters, 2021, 6(2):478-485. [54] RÖSMANN C, HOFFMANN F, BERTRAM T. Integrated online trajectory planning and optimization in distinctive topologies[J]. Robotics and Autonomous Systems, 2017, 88:142-153. [55] JAILLET L, SIMEON T. Path deformation roadmaps:compact graphs with useful cycles for motion planning[J]. The International Journal of Robotics Research, 2008, 27(11-12):1175-1188. [56] ZHOU B Y, GAO F, PAN J, et al. Robust real-time UAV replanning using guided gradient-based optimization and topological paths[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2020:1208-1214. [57] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[M].Berlin:Springer, 2011:3-19. [58] VAN DEN BERG J, SNAPE J, GUY S J, et al. Reciprocal collision avoidance with acceleration-velocity obstacles[C]//2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE Press, 2011:3475-3482. [59] ARUL S H, MANOCHA D. DCAD:Decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE Robotics and Automation Letters, 2020, 5(2):1191-1198. [60] LIU Z X, CHEN B M, ZHOU H Y, et al. MAPPER:multi-agent path planning with evolutionary reinforcement learning in mixed dynamic environments[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway:IEEE Press, 2020:11748-11754. [61] PARRISH J K, VISCIDO S V, GRVNBAUM D. Self-organized fish schools:An examination of emergent properties[J]. The Biological Bulletin, 2002, 202(3):296-305. [62] POTTS W K. The chorus-line hypothesis of manoeuvre coordination in avian flocks[J]. Nature, 1984, 309(5966):344-345. [63] OKUBO A. Dynamical aspects of animal grouping:Swarms, schools, flocks, and herds[J]. Advances in Biophysics, 1986, 22:1-94. [64] BEARD R W, MCLAIN T W, NELSON D B, et al. Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs[J]. Proceedings of the IEEE, 2006, 94(7):1306-1324. [65] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9):1520-1533. [66] REN W, BEARD R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies[J]. IEEE Transactions on Automatic Control, 2005, 50(5):655-661. [67] DENG C, WEN C Y, HUANG J S, et al. Distributed observer-based cooperative control approach for uncertain nonlinear MASs under event-triggered communication[J]. IEEE Transactions on Automatic Control, 2022, 67(5):2669-2676. [68] FAX J A, MURRAY R M. Information flow and cooperative control of vehicle formations[J]. IFAC Proceedings Volumes, 2002, 35(1):115-120. [69] YU J L, DONG X W, LI Q D, et al. Fully adaptive practical time-varying output formation tracking for high-order nonlinear stochastic multiagent system with multiple leaders[J]. IEEE Transactions on Cybernetics, 2021, 51(4):2265-2277. [70] WANG Y W, LIU X K, XIAO J W, et al. Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control[J]. Automatica, 2018, 93:26-32. [71] LIU H Y, CHENG L, TAN M, et al. Containment control with multiple interacting leaders under switching topologies[C]//Proceedings of the 32nd Chinese Control Conference. Piscataway:IEEE Press, 2013:7093-7098. [72] LIU S, XIE L H, ZHANG H S. Containment control of multi-agent systems by exploiting the control inputs of neighbors[J]. International Journal of Robust and Nonlinear Control, 2014, 24(17):2803-2818. [73] DONG X W, HUA Y Z, ZHOU Y, et al. Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(1):229-240. [74] DONG X W, TAN Q K, LI Q D, et al. Necessary and sufficient conditions for average formation tracking of second-order multi-agent systems with multiple leaders[J]. Journal of the Franklin Institute, 2017, 354(2):611-626. [75] DONG X W, HU G Q. Time-varying formation tracking for linear multiagent systems with multiple leaders[J]. IEEE Transactions on Automatic Control, 2017, 62(7):3658-3664. [76] ZHENG Y S, WANG L. Consensus of heterogeneous multi-agent systems without velocity measurements[J]. International Journal of Control, 2012, 85(7):906-914. [77] YU J L, DONG X W, LI Q D, et al. Adaptive practical optimal time-varying formation tracking control for disturbed high-order multi-agent systems[J]. IEEE Transactions on Circuits and Systems I:Regular Papers, 2022, 69(6):2567-2578. [78] DUAN H B, ZHANG Y P, LIU S Q. Multiple UAVs/UGVs heterogeneous coordinated technique based on Receding Horizon Control (RHC) and velocity vector control[J]. Science China Technological Sciences, 2011, 54(4):869-876. [79] JIANG W, WEN G G, PENG Z X, et al. Fully distributed formation-containment control of heterogeneous linear multiagent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(9):3889-3896. [80] LI W H, ZHANG H G, GAO Z Y, et al. Fully distributed event/self-triggered bipartite output formation-containment tracking control for heterogeneous multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1-10. [81] 张晖. 无人机在消防灭火救援中的应用分析[J]. 消防界(电子版), 2022, 8(1):51-53. ZHANG H. Application analysis of UAV in fire fighting and res-cue[J]. Fire Protection Industry (Electronic Edition), 2022, 8(1):51-53 (in Chinese). [82] 晏治. 无人机在消防灭火救援工作中的应用效果分析[J]. 消防界(电子版), 2021, 7(23):51-52. YAN Z. Analysis of application effect of unmanned aerial vehicle in fire fighting and rescue work[J]. Fire Protection Industry (Electronic Edition), 2021, 7(23):51-52 (in Chinese). [83] 阚瑷珂. 复杂山地景区"空-天-地"一体化协同搜救平台研发与应用示范:CN106447579A[P]. 2017-02-22 (in Chinese). KAN Y K. Research and application demonstration of "air-sky-earth" integrated cooperative search and rescue platform in complex mountain scenic spots:CN106447579A[P]. 2017-02-22. [84] 于斌. 消防灭火救援过程中无人机作用分析[J]. 中国科技信息, 2022(5):76-77. YU B. Analysis of UAV's role in fire fighting and rescue[J]. China Science and Technology Information, 2022(5):76-77 (in Chinese). [85] 朱连熙, 颜康龙, 罗嘉俊. 基于森林火灾的多类型无人机布局与控制方法[J]. 科技与创新, 2021(23):55-56. ZHU L X, YAN K L, LUO J J. Layout and control method of multi-type unmanned aerial vehicles based on forest fire[J]. Science and Technology & Innovation, 2021(23):55-56 (in Chinese). [86] 刘闯, 鱼小军, 张婷, 等. 无人集群装备仿真试验关键技术现状及趋势[J/OL]. 航空学报, (2022-03-14)[2022-06-04].https://kns.cnki.net/kcms/detail/11.1929.V.20220311.0949.002.html. LIU C, YU X J, ZHANG T, et al. Research status and trend of key technologies of simulation test of unmanned swarm equipment[J/OL]. Acta Aeronautica et Astronautica Sinica, (2022-03-14)[2022-06-04]. https://kns.cnki.net/kcms/detail/11.1929.V.20220311.0949.002.html (in Chinese). [87] 王春艳,任浩,匡敏驰, 等.基于军事规则的无人坦克集群协同作战仿真[J].系统仿真学报, 2022,34(8):1691-1696. WANG C Y, REN H, KUANG M C, et al, Simulation of unmanned tank cooperative combat based on military rules[J]. Journal of System Simulation, 2022,34(8):1691-1696 (in Chinese). [88] 邹立岩, 张明智, 柏俊汝. OODA-L模式下的智能无人集群作战仿真建模框架[J]. 国防科技大学学报, 2021, 43(4):163-170. ZOU L Y, ZHANG M Z, BAI J R. Modeling framework for intelligent unmanned swarm operation simulation under OODA-L pattern[J]. Journal of National University of Defense Technology, 2021, 43(4):163-170 (in Chinese). [89] 朱波, 胡旭东, 谈东奎, 等. 基于多通道态势图的自动驾驶场景表征方法[J]. 中国公路学报, 2020, 33(8):204-214. ZHU B, HU X D, TAN D K, et al. Automatic driving scenario representation based on multi-channel situation map[J]. China Journal of Highway and Transport, 2020, 33(8):204-214 (in Chinese). [90] 张斌,林斌,杨彦彰,等.国内民用无人机系统标准体系构建现状[J].中国标准化,2019(S1):122-125. ZHANG B, LIN B, YANG Y Z, et al. Research on the current status of standards system construction for domestic civil UAV system[J]. China Standardization, 2019(S1):122-125 (in Chinese). |