1 |
赵宾宾, 张恒, 李杰. 翼型结冰状态复杂分离流动数值模拟综述[J]. 航空学报, 2023, 44(1): 627211.
|
|
ZHAO B B, ZHANG H, LI J. Review of numerical simulation on complex separated flow of iced airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627211 (in Chinese).
|
2 |
郭琪磊, 桑为民, 牛俊杰, 等. 复杂气象条件下考虑结冰风险的无人机飞行策略[J]. 航空学报, 2023, 44(1): 627518.
|
|
GUO Q L, SANG W M, NIU J J, et al. UAV flight strategy considering icing risk under complex meteorological conditions[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627518 (in Chinese).
|
3 |
伍强, 徐浩军, 魏扬, 等. 结冰条件下飞机气动/运动耦合特性[J]. 航空学报, 2022, 43(8): 125566.
|
|
WU Q, XU H J, WEI Y, et al. Aerodynamics/flight dynamics coupling characteristics of aircraft under icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125566 (in Chinese).
|
4 |
黄雄, 曲仕茹, 张恒, 等. 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023, 44(1): 627077.
|
|
HUANG X, QU S R, ZHANG H, et al. Stall performance of high-lift configuration of large civil aircraft with slat de-icing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(1): 627077 (in Chinese).
|
5 |
卜雪琴, 李皓, 黄平, 等. 二维机翼混合相结冰数值模拟[J]. 航空学报, 2020, 41(12): 124085.
|
|
BU X Q, LI H, HUANG P, et al. Numerical simulation of mixed phase icing on two-dimensional airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124085 (in Chinese).
|
6 |
陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术, 2020, 41(6): 1314-1323.
|
|
CHEN N L, DU J M, JI H H, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology, 2020, 41(6): 1314-1323 (in Chinese).
|
7 |
WRIGHT B W. User’s manual for LEWICE version 3.2:NASA/CR 2008-2142355[R]. Washington, D. C.: NASA, 2008.
|
8 |
任靖豪, 王强, 李维浩, 等. 基于梯度下降的水滴收集率计算方法[J]. 航空学报, 2023, 44(4): 126381.
|
|
REN J H, WANG Q, LI W H, et al. A prediction algorithm of collection efficiency based on gradient descent method[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 126381 (in Chinese).
|
9 |
XIE L, LI P Z, CHEN H, et al. Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: An adaptive interpolation method based on the restricted radial basis functions[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119290.
|
10 |
周志宏, 李凤蔚, 李广宁. 基于两相流欧拉方法的翼型结冰数值模拟[J]. 西北工业大学学报, 2010, 28(1): 138-142.
|
|
ZHOU Z H, LI F W, LI G N. Applying eulerian droplet impingement model to numerically simulating ice accretion but with some improvements[J]. Journal of Northwestern Polytechnical University, 2010, 28(1): 138-142 (in Chinese).
|
11 |
BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A finite element method study of Eulerian droplets impingement models[J]. International Journal for Numerical Methods in Fluids, 1999, 29(4): 429-449.
|
12 |
HAN H, YIN Z F, NING Y J, et al. Development of a 3D eulerian/lagrangian aircraft icing simulation solver based on OpenFOAM[J]. Entropy, 2022, 24(10): 1365.
|
13 |
MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
|
14 |
易贤, 桂业伟, 朱国林. 飞机三维结冰模型及其数值求解方法[J]. 航空学报, 2010, 31(11): 2152-2158.
|
|
YI X, GUI Y W, ZHU G L. Numerical method of a three-dimensional ice accretion model of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2152-2158 (in Chinese).
|
15 |
BOURGAULT Y, BEAUGENDRE H, HABASHI W G. Development of a shallow-water icing model in FENSAP-ICE[J]. Journal of Aircraft, 2000, 37(4): 640-646.
|
16 |
BEAUGENDRE H, MORENCY F, HABASHI W. ICE3D, FENSAP-ICE’s 3D in-flight ice accretion module[C]∥ Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002.
|
17 |
MYERS T G, CHARPIN J P F, CHAPMAN S J. The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface[J]. Physics of Fluids, 2002, 14(8): 2788-2803.
|
18 |
MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500.
|
19 |
MYERS T G, CHARPIN J P F, THOMPSON C P. Slowly accreting ice due to supercooled water impacting on a cold surface[J]. Physics of Fluids, 2002, 14(1): 240-256.
|
20 |
雷梦龙, 常士楠, 杨波. 基于Myers模型的三维结冰数值仿真[J]. 航空学报, 2018, 39(9): 121962.
|
|
LEI M L, CHANG S N, YANG B. Three-dimensional numerical simulation of icing using Myers model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 121962 (in Chinese).
|
21 |
CHEN N L, JI H H, CAO G Z, HU Y P, A three-dimensional mathematical model for simulating ice accretion on helicopter rotors[J]. Physics of Fluids, 2018, 30(8): 083602.
|
22 |
CHEN N L, HU Y P, JI H H, et al. A mathematical model based on unstructured mesh for ice accretion[J]. AIP Advances, 2019, 9(12): 125149.
|
23 |
李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122.
|
|
LI H R, DUAN Y Y, ZHANG Y F, et al. Key numerical methods in the icing simulation software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 107-122 (in Chinese).
|
24 |
陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学, 2021, 51(11): 1326-1347.
|
|
CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica), 2021, 51(11): 1326-1347 (in Chinese).
|
25 |
CHILTON T H, COLBURN A P. Mass transfer (absorption) coefficients prediction from data on heat transfer and fluid friction[J]. Industrial & Engineering Chemistry, 1934, 26(11): 1183-1187.
|
26 |
CHEN N L, YI X, WANG Q, et al. Numerical study on wind-driven thin water film runback on an airfoil[J]. AIAA Journal, 2023, 61(6): 2517-2525.
|
27 |
WRIGHT W. Validation results for lewice 3.0:NASA/CR-1999-208690[R]. Washington, D. C.: NASA, 2013
|
28 |
LAURENDEAU E, BOURGAULT-COTE S, OZCER I A, et al. Summary from the 1st AIAA ice prediction workshop[C]∥ Proceedings of the AIAA AVIATION 2022 Forum. Reston: AIAA, 2022.
|