收稿日期:
2023-08-17
修回日期:
2023-09-11
接受日期:
2023-09-13
出版日期:
2023-09-25
发布日期:
2023-09-21
通讯作者:
张搏
E-mail:18149292799@163.com
基金资助:
Wei LIU1,2, Lin ZHANG1, Daiqiang WANG3, Xianliang MENG1, Bo ZHANG1()
Received:
2023-08-17
Revised:
2023-09-11
Accepted:
2023-09-13
Online:
2023-09-25
Published:
2023-09-21
Contact:
Bo ZHANG
E-mail:18149292799@163.com
Supported by:
摘要:
激光武器具有作战成本低、转移火力快、杀伤可控等显著优势,被认为是目前反无人机(UAV)集群作战中最具技术可行性的定向能武器。随着激光武器逐步从试验验证进入作战运用阶段,对激光武器反无人机集群作战运用关键技术进行综述分析迫在眉睫。通过梳理激光武器毁伤作用机理及发展现状,分析激光武器反无人机集群作战运用关键问题,并总结归纳激光武器-集群目标分配技术、激光毁伤效能评估技术的研究进展,最后对激光武器反无人机集群作战运用关键技术研究方向进行展望,以期为激光武器尽早投入作战运用提供借鉴和参考。
中图分类号:
刘伟, 张琳, 王代强, 孟宪良, 张搏. 激光武器反无人机集群作战运用及关键技术[J]. 航空学报, 2024, 45(12): 329457-329457.
Wei LIU, Lin ZHANG, Daiqiang WANG, Xianliang MENG, Bo ZHANG. Application and key technologies of laser weapons in anti-UAV swarm operations[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 329457-329457.
1 | AMY H. The Looming Swarm[J/OL]. Air & Space Forces Magazine, (2019-05-22)[2023-08-17]. . |
2 | 罗磊, 谭碧涛. 舰载激光武器作战运用研究[J]. 激光与红外, 2022, 52(7): 1058-1063. |
LUO L, TAN B T. Research on operational application of shipborne laser weapon[J]. Laser & Infrared, 2022, 52(7): 1058-1063 (in Chinese). | |
3 | 禹明刚, 张东戈, 何明, 等. 激光武器反无人机蜂群作战的挑战及技术解决方案[C]∥2022年无人系统高峰论坛(USS2022)论文集. 北京: 北京海鹰科技情报研究所, 2022: 50-57. |
YU M G, ZHANG D G, HE M, et al. The challenge of laser weapon anti unmanned swarm warfare and its technical solutions[C]∥Proceedings of Unmanned Systems Summit 2022 (USS2022). Beijing: Beijing Seahawk Science and Technology Information Institute, 2022: 50-57. (in Chinese). | |
4 | AFFAN A S, MOHSIN M, ZUBAIR A S M. Survey and technological analysis of laser and its defense applications[J]. Defence Technology, 2021, 17(2): 583-592. |
5 | 黄沛, 曹国辉, 张海晶, 等. 美国陆军车载战术激光武器发展分析[J]. 激光技术, 2022, 46(6): 817-822. |
HUANG P, CAO G H, ZHANG H J, et al. Development analysis of US Army vehicle tactical laser weapons[J]. Laser Technology, 2022, 46(6): 817-822 (in Chinese). | |
6 | BERNATSKYI A, SOKOLOVSKYI M. History of military laser technology development in military applications[J]. History of Science and Technology, 2022, 12(1): 88-113. |
7 | 申鹏飞. 强激光辐照下多层复合材料损伤机理研究[D]. 上海: 东华大学, 2022: 1-8. |
SHEN P F. Study on the damage mechanism of multilayer composites under high-energy laser irradiation[D]. Shanghai: Donghua University, 2022: 1-8. (in Chinese) | |
8 | LIGABO I A, MOTA D S R H, DE A F C C, et al. Pulsed laser damage threshold evaluation of a carbon fiber composite skin and its effects on internal substrates[J]. Optics & Laser Technology, 2021, 143: 107304. |
9 | JABCZYŃSKI J K, GONTAR P. Impact of atmospheric turbulence on coherent beam combining for laser weapon systems[J]. Defence Technology, 2021, 17(4): 1160-1167. |
10 | 朱孟真, 陈霞, 刘旭, 等. 战术激光武器反无人机发展现状和关键技术分析[J]. 红外与激光工程, 2021, 50(7): 188-200. |
ZHU M Z, CHEN X, LIU X, et al. Situation and key technology of tactical laser anti-UAV[J]. Infrared and Laser Engineering, 2021, 50(7): 188-200 (in Chinese). | |
11 | BAHADUR P. Review on LASER and its application in diverse defence field[J]. Electronic, 2018,12(04):8-12. |
12 | KALISKY Y, KALISKY O. Applications and performance of high power lasers and in the battlefield[J]. Optical Materials, 2011, 34(2): 457-460. |
13 | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
LIU L, LIU D W, WANG X G, et al. Development status and outlook of UAV clusters and an-ti-UAV clusters [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
14 | 柳强, 何明. 海上小型无人机集群的反制装备需求与应对之策研究[J]. 军事运筹与系统工程, 2019, 33(4): 59-65. |
LIU Q, HE M. Research on countermeasures equipment demand and coping strategies for maritime small UAV swarm[J]. Military Operations Research and Systems Engineering, 2019, 33(4): 59-65 (in Chinese). | |
15 | 宋乃秋, 张昊春, 马超, 等. 高能激光武器毁伤机理多物理场建模[J]. 化工学报, 2016, 67(S1): 359-365. |
SONG N Q, ZHANG H C, MA C, et al. Multiple physical modeling for damage mechanism of high energy laser weapon[J]. CIESC Journal, 2016, 67(S1): 359-365 (in Chinese). | |
16 | KAUSHAL H, KADDOUM G. Applications of lasers for tactical military operations[J]. IEEE Access, 2017, 5: 20736-20753. |
17 | DAVID H T. Military laser technology and systems[M]. London: Artech House Publishers, 2015: 237-250. |
18 | LYUBOMIR L, EDMUNDS T, RISHAM G. Applications of laser technology in the army[J]. Journal of Defense Management, 2021, 11: 1-8. |
19 | EXTANCE A. Military technology: Laser weapons get real[J]. Nature, 2015, 521: 408-410. |
20 | LYU C Y, ZHAN R J. Global analysis of active defense technologies for unmanned aerial vehicle[J]. IEEE Aerospace and Electronic Systems Magazine, 2022, 37(1): 6-31. |
21 | 周末, 孙海文, 王亮, 等. 国外反无人机蜂群作战研究[J]. 指挥控制与仿真, 2023, 45(2): 24-30. |
ZHOU M, SUN H W, WANG L, et al. Research on foreign anti-UAV swarm warfare[J]. Command Control & Simulation, 2023, 45(2): 24-30 (in Chinese). | |
22 | STAFF. Russia claims its Zadira laser weapon destroyed a drone in Ukraine[EB/OL]. (2022-05-19)[2023-08-17]. . |
23 | 伍尚慧, 李晓东. 2021年新概念武器装备技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(4): 362-367. |
WU S H, LI X D. Overview of the field of new concept weapons in 2021[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(4): 362-367 (in Chinese). | |
24 | 王泽坤. 反无人机指控系统的设计与仿真评估研究[D]. 西安: 西安电子科技大学, 2021: 1-6. |
WANG Z K. Design and simulation evaluation of anti-UAV command system[D].Xi’an: Xidian University, 2021: 1-6 (in Chinese). | |
25 | TADEUSZ Z. Factors determining a drone swarm employment in military operations[J]. Safety & Defense, 2021, 7(1): 59-71. |
26 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41(4): 023732. |
WANG X K, LIU Z H, CONG Y R, et al. Miniature fixed-wing UAV swarms: Review and outlook[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 023732 (in Chinese). | |
27 | 付鑫, 赵然, 梁延峰, 等. 反无人机蜂群技术发展综述[J]. 中国电子科学研究院学报, 2022, 17(5): 421-428. |
FU X, ZHAO R, LIANG Y F, et al. Review on the development of anti UAV bee colony technology[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(5): 421-428 (in Chinese). | |
28 | SARANOVIC D, PAVLOVSKI M, POWER W, et al. Interception of automated adversarial drone swarms in partially observed environments[J]. Integrated Computer-Aided Engineering, 2021, 28(4): 335-348. |
29 | YAN J D, XIE H B, ZHUANG D Y. The adaptability of countermeasures against UAV swarms in typical mission scenarios[C]∥International Conference on Autonomous Unmanned Systems. Singapore: Springer Singapore, 2022: 2436-2447. |
30 | DAVID F, HOLGER N, GARIK M, et al. Counter-unmanned aerial vehicle systems[M]. Hoboken: John Wiley & Sons, Ltd, 2022: 122-148. |
31 | 周新人, 卢盈齐, 刘学亮, 等. 国外定向能防空武器抗击无人机蜂群研究现状分析及思考[J]. 飞航导弹, 2021(7): 91-95. |
ZHOU X R, LU Y Q, LIU X L, et al. Analysis and consideration of research status of directed energy air defense weapon against UAV swarm abroad[J]. Aerodynamic Missile Journal, 2021(7): 91-95 (in Chinese). | |
32 | US Navy takes delivery of tactical Lockheed Martin laser weapon[EB/OL]. (2022-08-21)[2023-08-17]. . |
33 | 季军亮, 温玉涛, 罗婷婷, 等. 陆基激光防空武器的特点及应对目标分析[J]. 现代防御技术, 2020, 48(3): 44-48, 112. |
JI J L, WEN Y T, LUO T T, et al. Characteristic and targets of land-based laser air defense weapon[J]. Modern Defence Technology, 2020, 48(3): 44-48, 112 (in Chinese). | |
34 | 宋乃秋, 张昊春, 王丽, 等. 高能激光武器毁伤威力仿真建模[J]. 兵工学报, 2016, 37(S1): 146-151. |
SONG N Q, ZHANG H C, WANG L, et al. Damage Power Modeling and Simulation of High Ener-gy Laser Weapon[J]. Acta Armamentarii, 2016, 37(S1): 146-151 (in Chinese). | |
35 | YUN Q J, SONG B F, PEI Y. Modeling the impact of high energy laser weapon on the mission effectiveness of unmanned combat aerial vehicles[J]. IEEE Access, 2020, 8: 32246-32257. |
36 | 陈军燕, 廖龙文, 曾鹏. 美国地基反卫星激光武器发展分析[J]. 红外与激光工程, 2020, 49(S1): 42-47. |
CHEN J Y, LIAO L W, ZENG P. Development analysis of American anti-satellite ground-based laser weapon[J]. Infrared and Laser Engineering, 2020, 49(S1): 42-47 (in Chinese). | |
37 | 王海涛. 激光武器关键技术及典型作战模式分析[J]. 航空兵器, 2020, 27(2): 25-31. |
WANG H T. Analysis on the key technologies and typical battle mode of laser weapon[J]. Aero Weaponry, 2020, 27(2): 25-31 (in Chinese). | |
38 | 田春雨, 张猛山. 机载激光武器及其关键技术[J]. 科技导报, 2019, 37(4): 30-34. |
TIAN C Y, ZHANG M S. Airborne laser weapon and the key technology[J]. Science & Technology Review, 2019, 37(4): 30-34 (in Chinese). | |
39 | 石新新, 马长正, 宋学辉. 反无人机集群作战及关键技术研究[C]∥022年无人系统高峰论坛(USS2022)论文集. 北京: 北京海鹰科技情报研究所, 2022: 45-49. |
SHI X X, MA C Z, SONG X H. Research on anti-UAV cluster operation and key technologies [C]∥Proceedings of Unmanned Systems Summit 2022 (USS2022). Beijing: Beijing Seahawk Science and Technology Information Institute, 2022: 45-49. (in Chinese). | |
40 | TYURIN V, MARTYNIUK O, MIRNENKO V, et al. General approach to counter unmanned aerial vehicles[C]∥2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD). Piscataway: IEEE Press, 2019: 75-78. |
41 | MANNE A S. A target-assignment problem[J]. Operations Research, 1958, 6(3): 346-351. |
42 | CAI H P, LIU J X, CHEN Y W, et al. Survey of the research on dynamic weapon-target assignment problem[J]. Journal of Systems Engineering and Electronics, 2006, 17(3): 559-565. |
43 | KLINE A, AHNER D, HILL R. The weapon-target assignment problem[J]. Computers and Operations Research, 2019, 105(C): 226-236. |
44 | 张骁雄, 葛冰峰, 姜江, 等. 面向能力需求的武器装备组合规划模型与算法[J]. 国防科技大学学报, 2017, 39(1): 102-108. |
ZHANG X X, GE B F, JIANG J, et al. Capability requirements oriented weapons portfolio planning model and algorithm[J]. Journal of National University of Defense Technology, 2017, 39(1): 102-108 (in Chinese). | |
45 | 李梦杰, 常雪凝, 石建迈, 等. 武器目标分配问题研究进展:模型、算法与应用[J]. 系统工程与电子技术, 2023, 45(4): 1049-1071. |
LI M J, CHANG X N, SHI J M, et al. Developments of weapon target assignment: Models, algorithms, and applications[J]. Systems Engineering and Electronics, 2023, 45(4): 1049-1071 (in Chinese). | |
46 | XU W Q, CHEN C, DING S X, et al. A bi-objective dynamic collaborative task assignment under uncertainty using modified MOEA/D with heuristic initialization[J]. Expert Systems with Applications, 2020, 140: 112844. |
47 | GUO D, LIANG Z X, JIANG P, et al. Weapon-target assignment for multi-to-multi interception with grouping constraint[J]. IEEE Access, 2019, 7: 34838-34849. |
48 | DAVIS M T, ROBBINS M J, LUNDAY B J. Approximate dynamic programming for missile defense interceptor fire control[J]. European Journal of Operational Research, 2017, 259(3): 873-886. |
49 | 杨荣军, 李长军. 粒子群算法在激光武器反无人机火力分配中的应用[J]. 指挥信息系统与技术, 2021, 12(5): 70-75, 81. |
YANG R J, LI C J. Application of particle swarm optimization in anti-UAV fire allocation of laser weapon[J]. Command Information System and Technology, 2021, 12(5): 70-75, 81 (in Chinese). | |
50 | 许瑞明. 无人机集群作战涌现机理及优化思路研究[J]. 军事运筹与系统工程, 2018, 32(2): 14-17. |
XU R M. A study on the emergence mechanism and optimization ideas of UAV swarm operations[J]. Military Operations Research and Systems Engineering, 2018, 32(2): 14-17 (in Chinese). | |
51 | CHANG T Q, KONG D P, HAO N, et al. Solving the dynamic weapon target assignment problem by an improved artificial bee colony algorithm with heuristic factor initialization[J]. Applied Soft Computing, 2018, 70: 845-863. |
52 | CHANG S C, JAMES R M, SHAW J J. Assignment algorithm for kinetic energy weapons in boost phase defence[C]∥26th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1987: 1678-1683. |
53 | TAYLOR A B. Counter-unmanned aerial vehicles study: Shipboard laser weapon system engagement strategies for countering drone swarm threats in the maritime environment[D]. Monterey: Naval Postgraduate School, 2021:42-64. |
54 | 苑文楠, 贾彦翔, 吕鑫, 等. “低慢小” 目标多体制武器分配优化模型[J]. 电光与控制, 2022, 29(3): 1-5. |
YUAN W N, JIA Y X, LYU X, et al. An optimization model of multi-system weapon assignment for LSS targets[J]. Electronics Optics & Control, 2022, 29(3): 1-5 (in Chinese). | |
55 | 苑文楠, 贾彦翔, 侯师. 城市环境下低慢小目标动态火力分配模型[C]∥第九届中国指挥控制大会论文集. 北京: 中国指挥与控制学会, 2021: 268-274. |
YUAN W N, JIA Y X, HOU S. Dynamic fire assignment model of low slow small target in urban environment[C]∥Proceedings of the 9th China Command and Control Conference. Beijing: China Comman d and Control Society, 2021: 268-274 (in Chinese). | |
56 | 蒋佳锐, 徐国亮, 王团团. 一种基于改进r-NSGA-Ⅱ算法的联合防空问题算法[J]. 指挥控制与仿真, 2023, 45(1): 75-83. |
JIANG J R, XU G L, WANG T T. An algorithm for joint air defense problem based on improved r-NSGA-Ⅱ algorithm[J]. Command Control & Simulation, 2023, 45(1): 75-83 (in Chinese). | |
57 | SP L, HS W. Weapons allocation is NP-complete[C]∥1986 summer computer simulation conference. 1986: 1054-1058. |
58 | 黄亭飞, 程光权, 黄魁华, 等. 基于DQN的多类型拦截装备复合式反无人机任务分配方法[J]. 控制与决策, 2022, 37(1): 142-150. |
HUANG T F, CHENG G Q, HUANG K H, et al. Task assignment method of compound anti-drone based on DQN for multi type interception equipment[J]. Control and Decision, 2022, 37(1): 142-150 (in Chinese). | |
59 | 牛奔, 姜崃. 软硬杀伤武器协同反无人机策略优化方法[C]∥第十届中国指挥控制大会论文集(上册). 北京: 中国指挥与控制学会, 2022: 552-556. |
NIU B, JIANG L. Optimization of soft-hard killing weapon cooperative strategy in anti-UAV[C]∥Proceedings of the 10th China Command and Control Conference (Volume 1). Beijing: China Command and Control Society, 2022: 552-556 (in Chinese). | |
60 | XIN B, WANG Y P, CHEN J. An efficient marginal-return-based constructive heuristic to solve the sensor–weapon-target assignment problem[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(12): 2536-2547. |
61 | EDWARDS D. Simulated laser weapon system decision support to combat drone swarms with machine learning[D]. Monterey: Naval Postgraduate School, 2021: 23-47. |
62 | 黄亭飞. 基于复合拦截策略的小型无人机智能决策技术研究[D]. 长沙: 国防科技大学, 2021: 21-45. |
HUANG T F. Research on intelligent decision making technology of small UAV based on consistent interception strategy[D].Changsha: National University of Defense Technology, 2021: 21-45. (in Chinese) | |
63 | 秦长江, 黄亭飞, 黄金才. 改进遗传算法的反无人机作战火力分配优化[J]. 国防科技, 2022, 43(1): 85-92. |
QIN C J, HUANG T F, HUANG J C. Optimization of fire assignment in anti-UAV combat with improved genetic algorithm[J]. National Defense Technology, 2022, 43(1): 85-92 (in Chinese). | |
64 | SHOJAEIFARD A, AMROUDI A N, MANSOORI A, et al. Projection recurrent neural network model: A new strategy to solve weapon-target assignment problem[J]. Neural Processing Letters, 2019, 50(3): 3045-3057. |
65 | GONG H, ZHU S Y, XU K, et al. Weapon targets assignment for electro-optical system countermeasures based on multi-objective reinforcement learning[C]∥ 2022 China Automation Congress (CAC). Piscataway: IEEE Press, 2022: 6714-6719. |
66 | 宋贵宝, 刘镇毓, 刘铁, 等. 防空导弹拦截效果评估研究综述[J]. 兵器装备工程学报, 2021, 42(11): 7-14. |
SONG G B, LIU Z Y, LIU T, et al. Summary of research on effectiveness evaluation of ship-to-air missile interception[J]. Journal of Ordnance Equipment Engineering, 2021, 42(11): 7-14 (in Chinese). | |
67 | LIAO L W, XIE F Y, CHEN J Y. Analysis on technology of high-energy counter-UAVs laser weapon[C]∥ Proceedings of the 2020 4th International Conference on Vision, Image and Signal Processing. New York: ACM, 2020: 1-5. |
68 | 彭聪, 卢发兴, 邢昌风. 舰载激光武器毁伤评估仿真模型[J]. 激光与红外, 2017, 47(8): 1006-1012. |
PENG C, LU F X, XING C F. Damage assessment simulation model for shipborne high-energy laser weapon[J]. Laser & Infrared, 2017, 47(8): 1006-1012 (in Chinese). | |
69 | 王向民, 王军, 郭治. 连续波强激光武器的动态毁伤概率数学模型[J]. 火力与指挥控制, 2016, 41(2): 55-59. |
WANG X M, WANG J, GUO Z. Mathematical model for dynamic damage probability of the CW high-energy laser devices[J]. Fire Control & Command Control, 2016, 41(2): 55-59 (in Chinese). | |
70 | 王向民, 王军, 郭治. 连续波强激光武器动态毁伤概率的非毁检测法[J]. 火力与指挥控制, 2016, 41(5): 121-124, 129. |
WANG X M, WANG J, GUO Z. Test method for dynamic damage probability of the CW high-energy laser devices without damage[J]. Fire Control & Command Control, 2016, 41(5): 121-124, 129 (in Chinese). | |
71 | 徐东翔. 舰载激光武器毁伤能力的建模与仿真[J]. 系统仿真技术, 2021, 17(2): 94-97. |
XU D X. Modeling and simulation on damage ability of shipborne laser weapon[J]. System Simulation Technology, 2021, 17(2): 94-97 (in Chinese). | |
72 | 杨剑波, 宗思光, 陈利斐. 舰载激光武器对典型无人机蜂群目标毁伤距离研究[J]. 激光与红外, 2022, 52(5): 745-751. |
YANG J B, ZONG S G, CHEN L F. Research on destruction distance of shipborne laser weapon to typical UAV swarm target[J]. Laser & Infrared, 2022, 52(5): 745-751 (in Chinese). | |
73 | 贺宣, 周冰, 刘贺雄, 等. 激光压制干扰评估研究现状[J]. 激光与红外, 2019, 49(7): 787-793. |
HE X, ZHOU B, LIU H X, et al. Research status of laser suppression interference assessment[J]. Laser & Infrared, 2019, 49(7): 787-793 (in Chinese). | |
74 | BOGLER P L. Shafer-dempster reasoning with applications to multisensor target identification systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(6): 968-977. |
75 | 吴玲, 卢俊霖, 许俊飞. 激光武器反无人机集群建模与效能评估[J]. 激光与红外, 2022, 52(6): 887-892. |
WU L, LU J L, XU J F. Modeling and effectiveness evaluation on UAV cluster interception using laser weapon systems[J]. Laser & Infrared, 2022, 52(6): 887-892 (in Chinese). | |
76 | TRAN H T, BALCHANOS M, DOMERÇANT J C, et al. A framework for the quantitative assessment of performance-based system resilience[J]. Reliability Engineering & System Safety, 2017, 158: 73-84. |
77 | 程聪聪. 面向任务的无人机集群韧性评估研究[D]. 长沙: 国防科技大学, 2020: 19-101. |
CHENG C C. Study on resilience evaluation for the Mission-oriented UAV swarm[D]. Changsha: National University of Defense Technology, 2020: 19-101. (in Chinese). | |
78 | ADAMEY E, OĞUZ A E, ÖZGÜNER Ü. Collaborative multi-MSA multi-target tracking and surveillance: A divide & conquer method using region allocation trees[J]. Journal of Intelligent & Robotic Systems, 2017, 87(3): 471-485. |
79 | LI J, HAN Y. Optimal resource allocation for packet delay minimization in multi-layer UAV networks[J]. IEEE Communications Letters, 2017, 21(3): 580-583. |
[1] | 刘雷, 刘大卫, 王晓光, 陈俊男, 刘东兴. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908-726908. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学