1 |
张涵信,分离流与旋涡运动的结构分析[M]. 北京:国防工业出版社, 2002.
|
|
ZHANG H X. Structural analysis of separating flow and vortex motion[M]. Beijing: National Defense Industry Press, 2002 (in Chinese).
|
2 |
ZHAO X H, LI Y H, WU Y, et al. Numerical investigation of flow separation control on a highly loaded compressor cascade by plasma aerodynamic actuation[J]. Chinese Journal of Aeronautics, 2012, 25(3): 349-360.
|
3 |
TAYLOR J V, MILLER R J. Competing three-dimensional mechanisms in compressor flows[J]. Journal of Turbomachinery, 2017, 139(2): 021009.
|
4 |
GBADEBO S A, CUMPSTY N A, HYNES T P. Three-dimensional separations in axial compressors[J]. Journal of Turbomachinery, 2005, 127(2): 331-339.
|
5 |
LEI V M, SPAKOVSZKY Z S, GREITZER E M. A criterion for axial compressor hub-corner stall[J]. Journal of Turbomachinery, 2008, 130(3): 031006.
|
6 |
REIF W E. Morphogenesis and function of the squamation in sharks[J]. Neues Jahrbuch Für Geologie Und Paläontologie-Abhandlungen, 1982, 164(1-2): 172-183.
|
7 |
CHOI H, MOIN P, KIM J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of Fluid Mechanics, 1993, 255: 503-539.
|
8 |
LI F, ZHAO G, LIU W X. Research on drag reduction performance of turbulent boundary layer on bionic jet surface[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 231(1): 258-270.
|
9 |
FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60.
|
10 |
FISH F E, HOWLE L E, MURRAY M M. Hydrodynamic flow control in marine mammals[J]. Integrative and Comparative Biology, 2008, 48(6): 788-800.
|
11 |
FISH F E, LAUDER G V. Passive and active flow control by swimming fishes and mammals[J]. Annual Review of Fluid Mechanics, 2006, 38: 193-224.
|
12 |
MIKLOSOVIC D S, MURRAY M M, HOWLE L E, et al. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers[J]. Physics of Fluids, 2004, 16(5): L39-L42.
|
13 |
WATTS P, FISH F E. The influence of passive, leading edge tubercles on wing performance[C]∥ Proceedings of the Twelfth International Symposium on Unmanned Untethered Submersible Technology. 2001.
|
14 |
ZHAO M, ZHANG M M, XU J Z. Numerical simulation of flow characteristics behind the aerodynamic performances on an airfoil with leading edge protuberances[J]. Engineering Applications of Computational Fluid Mechanics, 2017, 11(1): 193-209.
|
15 |
CARREIRA PEDRO H, KOBAYASHI M. Numerical study of stall delay on humpback whale flippers[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
|
16 |
HANSEN K L, KELSO R M, DALLY B B. Performance variations of leading-edge tubercles for distinct airfoil profiles[J]. AIAA Journal, 2011, 49(1): 185-194.
|
17 |
ZHANG M M, WANG G F, XU J Z. Experimental study of flow separation control on a low-Re airfoil using leading-edge protuberance method[J]. Experiments in Fluids, 2014, 55(4): 1710.
|
18 |
ROSTAMZADEH N, HANSEN K L, KELSO R M, et al. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil’s performance with undulating leading edge modification[J]. Physics of Fluids, 2014, 26(10): 107101.
|
19 |
COLPITTS R R, PEREZ R E, JANSEN P W. Effect of leading-edge tubercles on rotor blades[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
|
20 |
VAN NIEROP E A, ALBEN S, BRENNER M P. How bumps on whale flippers delay stall: An aerodynamic model[J]. Physical Review Letters, 2008, 100(5): 054502.
|
21 |
STEIN B, MURRAY M M. Stall mechanism analysis of humpback whale flipper models[C]∥ Proceedings of Unmanned Untethered Submersible Technology (UUST). 2005.
|
22 |
KEERTHI M C, RAJESHWARAN M S, KUSHARI A, et al. Effect of leading-edge tubercles on compressor cascade performance[J]. AIAA Journal, 2016, 54(3): 912-923.
|
23 |
JOHARI H, HENOCH C, CUSTODIO D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11): 2634-2642.
|
24 |
SUDHAKAR S, KARTHIKEYAN N, SURIYANARA YANAN P. Experimental studies on the effect of leading-edge tubercles on laminar separation bubble[J]. AIAA Journal, 2019, 57(12): 5197-5207.
|
25 |
FAVIER J, PINELLI A, PIOMELLI U. Control of the separated flow around an airfoil using a wavy leading edge inspired by humpback whale flippers[J]. Comptes Rendus Mécanique, 2012, 340(1-2): 107-114.
|
26 |
PEARL J, MACKENZIE D. The book of why: The new science of cause and effect[M]. New York: Basic Books, 2018.
|
27 |
ZHANG Y F, MAHALLATI A, BENNER M. Experimental and numerical investigation of corner stall in a highly-loaded compressor cascade[C]∥ Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. New York: ASME, 2014.
|
28 |
张燕峰.高载荷压气机端壁流动及其控制策略研究[D]. 西安: 西北工业大学, 2010.
|
|
ZHANG Y F. Investigation of endwall flow behaviour and its control strategies in highly-loaded compressor[D]. Xi’an: Northwestern Polytechnical University, 2010 (in Chinese).
|
29 |
HAN J W, KAMBER M. Data mining: Concepts and techniques[M]. 2nd ed. Amsterdam: Elsevier, 2006.
|
30 |
NEUBERG L G. Causality: Models, reasoning, and inference, by Judea Pearl, Cambridge University Press, 2000[J]. Econometric Theory, 2003, 19(4): 675-685.
|
31 |
CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2003, 3(3): 507-554.
|
32 |
SUDER K L. Blockage development in a transonic, axial compressor rotor[J]. Journal of Turbomachinery, 1998, 120(3): 465-476.
|
33 |
刘宝杰, 张志博, 于贤君. 轴流压气机转子叶尖泄漏堵塞特性的试验研究[J]. 航空学报, 2013, 34(12): 2682-2691.
|
|
LIU B J, ZHANG Z B, YU X J. Experimental investigation on characteristics of tip leakage blockage in an axial compressor[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2682-2691 (in Chinese).
|
34 |
田思濛, 吴云, 张海灯, 等. 基于能量耗散率的低速扩压叶栅损失研究[J]. 航空学报, 2015, 36(10): 3249-3262.
|
|
TIAN S M, WU Y, ZHANG H D, et al. Energy loss in a low-speed compressor cascade with dissipation function[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3249-3262 (in Chinese).
|
35 |
LI X J, CHU W L, WU Y H, et al. Effective end wall profiling rules for a highly loaded compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(6): 535-553.
|
36 |
KANG S, HIRSCH C. Three dimensional flow in a linear compressor cascade at design conditions[C]∥ Proceedings of ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. New York: ASME, 1991.
|
37 |
MÜLLER R, SAUER H, VOGELER K, et al. Influencing the secondary losses in compressor cascades by a leading edge bulb modification at the endwall[C]∥ Proceedings of ASME Turbo Expo 2002: Power for Land, Sea, and Air. New York: ASME, 2002.
|
38 |
HERGT A, MEYER R, ENGEL K. Effects of vortex generator application on the performance of a compressor cascade[J]. Journal of Turbomachinery, 2013, 135(2): 021026.
|
39 |
DING J, CHEN S W, XU H, et al. Control of flow separations in compressor cascade by boundary layer suction holes in suction surface[C]∥ Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013.
|
40 |
LI Z Y, DU J, JEMCOV A, et al. A study of loss mechanism in a linear compressor cascade at the corner stall condition[C]∥ Proceedings of ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. New York: ASME, 2017.
|
41 |
郑覃. 扩压叶栅前缘结状凸起流动机理研究[D]. 上海: 上海交通大学, 2019.
|
|
ZHENG T. Investigation of flow mechanisms for leading edge tubercles in compressor cascades[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
|