航空学报 > 2023, Vol. 44 Issue (S2): 729868-729868   doi: 10.7527/S1000-6893.2023.29868

基于端口哈密顿系统的无人机编队分布式控制

郝文康1, 包素艳2, 陈琪锋1()   

  1. 1.中南大学 自动化学院,长沙 410083
    2.北京航天万源科技有限公司,北京 100083
  • 收稿日期:2023-11-13 修回日期:2023-11-21 接受日期:2023-12-20 出版日期:2023-12-25 发布日期:2023-12-26
  • 通讯作者: 陈琪锋 E-mail:chenqifeng@csu.edu.cn
  • 基金资助:
    国家自然科学基金(62073343)

Distributed control of UAVs formation based on port⁃Hamiltonian system

Wenkang HAO1, Suyan BAO2, Qifeng CHEN1()   

  1. 1.School of Automation,Central South University,Changsha 410083,China
    2.Beijing Aerospace Wanyuan Science & Technology Co. Ltd,Beijing 100083,China
  • Received:2023-11-13 Revised:2023-11-21 Accepted:2023-12-20 Online:2023-12-25 Published:2023-12-26
  • Contact: Qifeng CHEN E-mail:chenqifeng@csu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(62073343)

摘要:

基于端口哈密顿系统理论和状态误差互联-阻尼无源控制方法,设计了一种适用于无人机(UAV)编队的分布式控制律。首先建立了分布式控制下的无人机编队状态误差模型;其次根据各无人机相对平衡状态的状态误差以及无人机之间的状态误差设计了系统期望的哈密顿能量函数;然后基于状态误差互联-阻尼的无源控制方法推导了无人机编队系统的控制律;最后对设计的控制律进行仿真验证,结果表明无人机编队在该控制律下能快速的稳定到期望队形,并在收敛时间和响应过程平稳性方面具有一定的性能优势。

关键词: 无人机编队, 分布式, 非线性系统, 端口哈密顿系统, 无源控制

Abstract:

A distributed control law suitable for Unmanned Aerial Vehicle (UAV) formation is designed based on the port Hamiltonian system theory and the passivity-based control method of states error interconnection damping. Firstly, a states error model for UAVs formation under distributed control is established. Secondly, the expected Hamiltonian energy function of the system is designed based on the states error of the relative equilibrium state of each UAV and the states error between UAVs. Then, based on the passivity-based control method of states error interconnection damping, the control law of the UAVs formation system is derived. Finally, the designed control law is verified by simulation. The results show that the UAVs formation under this control law can be quickly stabilized to the expected formation, and has certain performance advantages in convergence time and response process stationarity.

Key words: UAVs formation, distributed, nonlinear system, port-Hamiltonian system, passivity-based control

中图分类号: