航空学报 > 2024, Vol. 45 Issue (11): 529213-529213   doi: 10.7527/S1000-6893.2023.29213

反压对撞击式喷嘴雾化特性影响

吴慧博1, 杨岸龙1, 张锋1, 杨宝娥1(), 连俊恺1, 汤成龙2   

  1. 1.西安航天动力研究所 航天液体动力全国重点实验室,西安 710100
    2.西安交通大学 能源与动力工程学院,西安 710049
  • 收稿日期:2023-06-25 修回日期:2023-07-20 接受日期:2023-11-20 出版日期:2023-12-15 发布日期:2023-12-07
  • 通讯作者: 杨宝娥 E-mail:beryl_yang12@sina.com
  • 基金资助:
    基础研究项目群项目(514010106-101);国家自然科学基金(52236001)

Effects of back pressure on atomization characteristics of impinging jet injector

Huibo WU1, Anlong YANG1, Feng ZHANG1, Baoe YANG1(), Junkai LIAN1, Chenglong TANG2   

  1. 1.National Key Laboratory of Aerospace Liquid Propulsion,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China
    2.School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China
  • Received:2023-06-25 Revised:2023-07-20 Accepted:2023-11-20 Online:2023-12-15 Published:2023-12-07
  • Contact: Baoe YANG E-mail:beryl_yang12@sina.com
  • Supported by:
    Basic Research Program(514010106-101);National Natural Science Foundation of China(52236001)

摘要:

针对反压条件下雾化数据缺乏、雾化机制不清的问题,采用直流自击喷嘴,在反压雾化实验仓中开展了0.1~4.1 MPa环境条件下的雾化特性宏观及微观实验研究。基于高速阴影成像方法获得了不同反压下自击喷嘴的喷雾宏观形貌并提取出雾化角、雾化场液滴速度分布等数据,进一步通过相位多普勒粒子分析(PDPA)激光测量手段获得了不同反压下液滴直径概率密度分布及索特平均直径(SMD)等微观特性参数。实验结果表明,高反压会导致喷雾总体发展受到压缩,雾化角减小,且雾化液滴的数量密度更为稠密;液滴速度随着反压增大,衰减更为显著;但液滴SMD随反压增大呈现非单调演化规律,且演化规律与沿喷孔出口的竖直距离有关,即当反压小于1.1 MPa时,液滴SMD随反压的增大而减小,在H=20 mm处,当反压从1.1 MPa增大到3.1 MPa,SMD基本保持不变,而进一步增大反压时,SMD逐渐增大。在H=30 mm处,当反压大于1.1 MPa时,SMD逐渐增大。分析认为,反压增大导致更高的液滴数量密度,提升了液滴碰撞并聚合的概率,使高反压下液滴SMD增大。

关键词: 撞击式喷嘴, 雾化, 反压, 液滴, 速度分布, 液滴直径

Abstract:

Aiming at the lack of atomization data and unclear atomization mechanism under back pressure, we conducted both macro and micro experimental research on atomization characteristics under the back pressure of 0.1–4.1 MPa using an impinging jet injector. Based on the high-speed shadow imaging method, the spray macro-morphology of the impinging jet injector under back pressure was obtained, and the atomization angle, the spatial distribution of droplet velocity in the spray field and other data extracted. Furthermore, the microscopic parameters such as the probability density distribution of droplet size and the Sauter Mean Diameter (SMD) under back pressure were obtained by the Phase Doppler Particle Analysis (PDPA) laser measurement method. The experimental results show that high back pressure compresses the overall development of spray, reduces the atomization angle, and increases the number density of atomized droplets. With the increase of back pressure, the droplet velocity attenuates more significantly. However, the SMD of droplets shows a non-monotonic evolution law with the increase of back pressure, and the evolution law is related to the vertical distance along the nozzle outlet. At a back pressure smaller than 1.1 MPa, the SMD of droplets decreases with the increase of back pressure. At H=20 mm, when the back pressure increases from 1.1 MPa to 3.1 MPa, the SMD remains basically unchanged, while further increasing back pressure leads to gradual SMD increase. At H=30 mm, back pressure larger than 1.1 MPa results in gradual SMD increase. It is considered that the increase of back pressure leads to higher droplet number density and increases the probability of droplet collision and polymerization, explaining the increase of droplet SMD under high back pressure.

Key words: impinging jet injector, atomization, back pressure, droplet, velocity distribution, droplet size

中图分类号: