| 1 |
BAUER H J. New low emission strategies and combustor designs for civil aeroengine applications[J]. Progress in Computational Fluid Dynamics, an International Journal, 2004, 4(3-5): 130-142.
|
| 2 |
POINSOT T. Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1-28.
|
| 3 |
程林.轴向旋流器振荡燃烧特性数值模拟研究[D]. 镇江:江苏科技大学, 2019.
|
|
CHENG L. Numerical simulation study on oscillating combustion characteristics of axial cyclone[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019 (in Chinese).
|
| 4 |
HAN X S, LI J X, MORGANS A S. Prediction of combustion instability limit cycle oscillations by combining flame describing function simulations with a thermoacoustic network model[J]. Combustion and Flame, 2015, 162(10): 3632-3647.
|
| 5 |
HAN X S, MORGANS A S. Simulation of the flame describing function of a turbulent premixed flame using an open-source LES solver[J]. Combustion and Flame, 2015, 162(5): 1778-1792.
|
| 6 |
LAERA D, CAMPA G, CAMPOREALE S M. A finite element method for a weakly nonlinear dynamic analysis and bifurcation tracking of thermo-acoustic instability in longitudinal and annular combustors[J]. Applied Energy, 2017, 187: 216-227.
|
| 7 |
SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Assessment of thermoacoustic instabilities in a partially premixed model combustor using URANS approach[J]. Applied Thermal Engineering, 2014, 71(1): 276-290.
|
| 8 |
SHAHI M, KOK J B W, ROMAN CASADO J C, et al. Transient heat transfer between a turbulent lean partially premixed flame in limit cycle oscillation and the walls of a can type combustor[J]. Applied Thermal Engineering, 2015, 81:128-139.
|
| 9 |
CHEN Z X, SWAMINATHAN N, STÖHR M, et al. Interaction between self-excited oscillations and fuel-air mixing in a dual swirl combustor[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2325-2333.
|
| 10 |
FREDRICH D, JONES W P, MARQUIS A J. A combined oscillation cycle involving self-excited thermo-acoustic and hydrodynamic instability mechanisms[J]. Physics of Fluids, 2021, 33(8): 085122.
|
| 11 |
PANT T, JAIN U, WANG H F. Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method[J]. Journal of Computational Physics, 2021, 425: 109899.
|
| 12 |
XIA Y, SHARKEY P, VERMA I,et al.Prediction of thermoacoustic instability and fluid-structure interactions for gas turbine combustor[J]. Journal Engineering Gas Turbines Power,2022,144(9):091005.
|
| 13 |
GHANI A, POINSOT T, GICQUEL L, et al. LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame[J]. Combustion and Flame, 2015, 162(11): 4075-4083.
|
| 14 |
程豫洲. 燃烧不稳定机理及其影响因素的全可压缩数值模拟研究[D]. 杭州: 浙江大学, 2021.
|
|
CHENG Y Z. Study on fully compressible numerical simulation of combustion instability mechanism and its influencing factors[D]. Hangzhou: Zhejiang University, 2021 (in Chinese).
|
| 15 |
YANG Y, WANG G F, FANG Y Q, et al. Experimental study of the effect of outlet boundary on combustion instabilities in premixed swirling flames[J]. Physics of Fluids, 2021, 33(2): 027106.
|
| 16 |
ROMAN CASADO J C. Nonlinear behavior of the thermoacoustic instabilities in the limousine combustor[D]. Enschede: University of Twente,2013.
|
| 17 |
MA F H, PROSCIA W, IVANOV V, et al. Large eddy simulation of self-excited combustion dynamics in a bluff-body combustor[C]∥ 51st AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2015.
|
| 18 |
MICHAEL B.Evaluation of impedance boundary conditions in ANSYS Fluent[D].Munich: Technical University of Munich, 2017.
|
| 19 |
COKLJAT D, JEMCOV A, MARUSZEWSKI J P.An implicit algorithm for finite volume-Finite element coupling[C]∥Sixth International Conference on Computational Method. 2015.
|
| 20 |
HAN X S, KRAJNOVIĆ S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids, 2013, 71(11): 1341-1360.
|
| 21 |
HAN X S, KRAJNOVIĆ S. Validation of a novel very large eddy simulation method for simulation of turbulent separated flow[J]. International Journal for Numerical Methods in Fluids, 2013, 73(5): 436-461.
|
| 22 |
HAN X S, KRAJNOVIĆ S. Very-large-eddy simulation based on k-ω model[J]. AIAA Journal, 2015, 53(4): 1103-1108.
|
| 23 |
POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
|
| 24 |
MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
|
| 25 |
LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 1:Formalism and simulation of a quasi-steady burner[J]. Combustion and Flame, 2011, 158(6): 1201-1214.
|
| 26 |
LECOCQ G, RICHARD S, COLIN O, et al. Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion. Part 2:Early flame development after sparking[J]. Combustion and Flame, 2011, 158(6): 1215-1226.
|
| 27 |
BOGER M, VEYNANTE D, BOUGHANEM H, et al. Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion[J]. Symposium (International) on Combustion, 1998, 27(1): 917-925.
|
| 28 |
FUREBY C. A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion[J]. Proceedings of the Combustion Institute, 2005, 30(1): 593-601.
|
| 29 |
ZIMONT V L, LIPATNIKOV A N. A numerical model of premixed turbulent combustion of gases[J].Chemical Physics Reports,1995,14(7):993-1025.
|
| 30 |
MA T, STEIN O T, CHAKRABORTY N, et al. A posteriori testing of algebraic flame surface density models for LES[J]. Combustion Theory and Modelling, 2013, 17(3): 431-482.
|
| 31 |
ROCHETTE B, COLLIN-BASTIANI F, GICQUEL L, et al. Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames[J]. Combustion and Flame, 2018, 191: 417-430.
|
| 32 |
GARBY R, SELLE L, POINSOT T. Analysis of the impact of heat losses on an unstable model rocket-engine combustor using Large-Eddy Simulation[C]∥ 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2012.
|
| 33 |
HERNÁNDEZ I, STAFFELBACH G, POINSOT T, et al. LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor[J]. Comptes Rendus Mécanique, 2013, 341(1-2): 121-130.
|