收稿日期:
2022-05-31
修回日期:
2022-06-20
接受日期:
2022-09-15
出版日期:
2023-05-25
发布日期:
2022-09-30
通讯作者:
杜大华
E-mail:cascddh@sina.com.cn
基金资助:
Received:
2022-05-31
Revised:
2022-06-20
Accepted:
2022-09-15
Online:
2023-05-25
Published:
2022-09-30
Contact:
Dahua DU
E-mail:cascddh@sina.com.cn
Supported by:
摘要:
随着液体火箭发动机技术的发展,结构动力学问题成为影响发动机寿命及可靠性的关键技术之一。经过多年努力,发动机结构从最初的静强度、安全寿命设计思想逐步发展为以动静强度联合、经济寿命设计为指导的研制理念和方法,并在型号中得到了成功应用,使发动机结构的工作可靠性得以大幅度提高。由于新型号火箭发动机结构的日益大型复杂化及工作环境的极端严酷性,为满足高性能、高可靠性、轻量化与可重复使用的研制需求,发动机结构动力学设计技术问题亟待解决。本文在分析发动机结构中典型动力学问题的基础上,梳理并重点介绍了载荷预计、动力学建模及模型修正、动强度评估与寿命评定、结构动力学优化及抗疲劳设计等关键技术,最后给出研究总结及展望。希望本文为液体火箭发动机结构动力学设计技术的发展提供支撑。
中图分类号:
杜大华, 李斌. 液体火箭发动机结构动力学设计关键技术综述[J]. 航空学报, 2023, 44(10): 27554-027554.
Dahua DU, Bin LI. Key structural dynamic design technologies in liquid rocket engines: Review[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 27554-027554.
1 | 黄道琼, 王振, 杜大华. 大推力液体火箭发动机中的动力学问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49(2): 23-34. |
HUANG D Q, WANG Z, DU D H. Structural dynamics of the large thrust liquid rocket engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2019, 49(2): 23-34 (in Chinese). | |
2 | 王彬文, 陈先民, 苏运来, 等. 中国航空工业疲劳与结构完整性研究进展与展望[J]. 航空学报, 2021, 42(5): 524651. |
WANG B W, CHEN X M, SU Y L, et al. Research progress and prospect of fatigue and structural integrity for aeronautical industry in China[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524651 (in Chinese). | |
3 | Department of Defense Handbook. Engine structural integrity program (ENSIP): MIL-H [S]. NPFC,2004 . |
4 | ESA Requirements and Standard Division. Spacecraft mechanical loads analysis handbook: ECSS-E- [S]. Noordwijk : ESA Requirements and Standard Division,2013. |
5 | NASA.Dynamic environmental criteria: NASA-HDBK-7005 [R].Washington,D.C.:NASA, 2001. |
6 | NASA. Load analyses of spacecraft and payloads : NASA-STD-5002[S]. Washington,D.C.:NASA, 2019. |
7 | ESA Requirements and Standard Division. Space engineering: Structure finite element models: ECSS-E-ST-32-03C-2008 [S]. Noordwijk : ESA Requirements and Standard Division,2008. |
8 | NASA. Strength and life assessment requirements for liquid-fueled space propulsion system engines : NASA-STD-5012[S]. Washington,D.C.:NASA, 2016. |
9 | Force Air, Space and Missile Systems Center. Evaluation and test requirements for liquid rocket engines: SMC-S-025 [S]. 2017. |
10 | 邱吉宝, 张正平, 向树红. 结构动力学及其在航天工程中的应用[M]. 合肥: 中国科学技术大学出版社, 2015. |
QIU J B, ZHANG Z P, XIANG S H. Structural dynamics and its applications in space engineering[M]. Hefei: University of Science and Technology of China Press, 2015 (in Chinese). | |
11 | 中国飞机强度研究所. 航空结构强度技术[M]. 北京: 航空工业出版社, 2013. |
Aircraft Strength Research Institute of China. Aircraft structure strength technology[M]. Beijing: Aviation Industry Press, 2013 (in Chinese). | |
12 | 谭永华. 液体火箭发动机结构动力学理论及工程应用[M]. 北京: 中国宇航出版社, 2022. |
TAN Y H. Structural dynamics theory and engineering application of liquid rocket engine[M]. Beijing: China Aerospace Publishing House, 2022 (in Chinese). | |
13 | MAHYAR N, HASAN K, LIANG G Z. Modeling the effect of reusability on the performance of an existing LPRE[J]. Acta Astronautica, 2021, 181: 201-216. |
14 | HARRY C I. Characteristics of space shuttle main engine failures[C]∥23rd Joint Propulsion Conference. Reston: AIAA, 1987. |
15 | 荣克林, 王帅. 航天装备结构动力学问题总结[J]. 强度与环境, 2016, 43(2): 1-8. |
RONG K L, WANG S. Characterization and simulation of pressure shock environment[J]. Structure & Environment Engineering, 2016, 43(2): 1-8 (in Chinese). | |
16 | SEIJS M V V D, KLERK D D, RIXEN D J. General framework for transfer path analysis: History, theory and classification of techniques[J]. Mechanical Systems and Signal Processing, 2016, 68-69: 217-244. |
17 | CHOI H G, THITE A N, THOMPSON D J. Comparison of methods for parameter selection in Tikhonov regularization with application to inverse force determination[J]. Journal of Sound and Vibration, 2007, 304(3-5): 894-917. |
18 | CHRISTENSEN E, BROWN A, FRADY G. Calculation of dynamic loads due to random vibration environemnts in rocket engine systems[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007. |
19 | BELELLOCH P. Matching random response[C]∥Presented at Spacecraft and Launch Vehicle Dynamic Environments Workshop, 2009. |
20 | LU G L, ZHANG X N, XIE S L. Bayesian identification of dynamic loads in the rocket engine[C]∥25th International Congress on Sound and Vibration, 2018. |
21 | 杨智春, 贾有. 动载荷识别方法的研究进展[J]. 力学学报, 2015, 47(2): 384. |
YANG Z C, JIA Y. Research progress of dynamic load identification methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 384 (in Chinese). | |
22 | 路广霖, 罗亚军, 张希农, 等. 基于加权正则化的火箭发动机振动传递路径分析[J]. 振动与冲击, 2019, 38(9): 271-276. |
LU G L, LUO Y J, ZHANG X N, et al. Vibration transfer path analysis of rocket engine based on weighted regularization[J]. Journal of Vibration and Shock, 2019, 38(9): 271-276 (in Chinese). | |
23 | YAN S, LI B, LI F. Dynamic load identification of a second stage liquid rocket engine based on Tikhonov regularization method[C]∥International Astronautical Congress, 2016. |
24 | ZHOU Y F, LI H, LUO Z. An accelerated editing method of multiaxial load spectrums for durability testing[J]. Engineering Fracture Mechanics, 2022, 270: 108569. |
25 | SHANGGUAN W B, ZHENG G F, RAKHEJA S,et al. A method for editing multi-axis load spectrums based on the wavelet transforms[J]. Measurement, 2020, 162: 107903. |
26 | LIU X N, ZHAO X Z, LIU X A, et al. A load spectrum editing method of time-frequency for rubber isolators based on the continuous wavelet transform[J]. Measurement, 2022, 198: 111374. |
27 | HYUN C, BOO S H, LEE P S. Improving the computational efficiency of the enhanced AMLS method[J]. Computers & Structures, 2020, 228: 106158. |
28 | WU L, TISO P, VAN KEULEN F. Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis[J]. AIAA Journal, 2018, 56(5): 2030-2044. |
29 | 杜大华, 贺尔铭, 李锋. 基于多重动态子结构法的大型复杂结构动力分析技术[J]. 推进技术, 2018, 39(8): 1849-1855. |
DU D H, HE E M, LI F. Dynamics analysis technology of large-scale complex structures based on multilevel dynamic substructure method[J]. Journal of Propulsion Technology, 2018, 39(8): 1849-1855 (in Chinese). | |
30 | PENG H J, LI F, KAN Z Y. A novel distributed model predictive control method based on a substructuring technique for smart tensegrity structure vibrations[J]. Journal of Sound and Vibration, 2020, 471: 115171. |
31 | DU D H, HE E M, LI F, et al. Using the hierarchical Kriging model to optimize the structural dynamics of rocket engines[J]. Aerospace Science and Technology, 2020, 107: 106248. |
32 | ZHANG B, XIANG Y, HE P, et al. Study on prediction methods and characteristics of ship underwater radiated noise within full frequency[J]. Ocean Engineering, 2019, 174: 61-70. |
33 | GU Y W, NIE X, YAN A G, et al. Experimental and numerical study on vibration and structure-borne noise of high-speed railway composite bridge[J]. Applied Acoustics, 2022, 192: 108757. |
34 | SONG H Y, ZHANG J. Structural reliability analysis based on interval analysis method in statistical energy analysis framework[J]. Mechanics Research Communications, 2021, 117: 103787. |
35 | 闫松, 李斌, 李锋. 结构动力学模型修正技术在液体火箭发动机中的应用[J]. 火箭推进, 2018, 44(1): 27-35, 52. |
YAN S, LI B, LI F. Application of structural dynamic model updating technique in liquid rocket engine[J]. Journal of Rocket Propulsion, 2018, 44(1): 27-35, 52 (in Chinese). | |
36 | SITI S S, SAKHIAH A K, ADIZA J, et al. Operational modal analysis and finite element model updating of ultra-high-performance concrete bridge based on ambient vibration test[J]. Case Studies in Construction Materials, 2022, 16: e01117. |
37 | YAN S, LI B, LI F, et al. Finite element model updating of liquid rocket engine nozzle based on modal test results obtained from 3-D SLDV technique[J]. Aerospace Science and Technology, 2017, 69: 412-418. |
38 | CONG S, HU S L J, LI H J. FRF-based pole-zero method for finite element model updating[J]. Mechanical Systems and Signal Processing, 2022, 177: 109206. |
39 | LAURA I, ILARIA V, NICOLA C, et al. An innovative continuous Bayesian model updating method for base-isolated RC buildings using vibration monitoring data[J]. Mechanical Systems and Signal Processing, 2020, 139: 106600. |
40 | CHUANG Y T. Mass matrix updating for model validation[C]∥Proceeding of the 15th International Modal Analysis Conference, 1997. |
41 | LINK M, FRISWELL M I. Working group 1: Generation of validated structural dynamic models—results of a benchmark study utilising the GARTEUR SM-AG19 test-bed[J]. Mechanical Systems and Signal Processing, 2003, 17(1): 9-20. |
42 | SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht: Kluwer Academic, 2001. |
43 | SCHIJVE J. Fatigue of structures and materials in the 20th century and the state of the art[J]. International Journal of Fatigue, 2003, 25(8): 679-702. |
44 | BARTLEY CHO J D, PALM T, RANATUNGA V. Overview of composite airframe life extension program project 2: Tools for assessing the durability and damage tolerance of fastened composite joints[C]∥2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018. |
45 | WANG T S, HE X F, WANG J Y, et al. Detail fatigue rating method based on bimodal Weibull distribution for DED Ti-6.5Al-2Zr-1Mo-1V titanium alloy[J]. Chinese Journal of Aeronautics, 2022, 35(4): 281-291. |
46 | SUN J Z, DING Z H, HUANG Q. Development of EIFS-based corrosion fatigue life prediction approach for corroded RC beams[J]. Engineering Fracture Mechanics, 2019(209):1-16. |
47 | LIAN Y D, GAO L Q, ZHANG Y L, et al. A normalized equivalent initial flaw size model to predict fatigue behavior of metallic materials[J]. Engineering Fracture Mechanics, 2020, 237: 107256. |
48 | 轩福贞, 赵鹏. 高温构件循环黏塑性行为及本构理论[M]. 北京: 科学出版社, 2021. |
XUAN F Z, ZHAO P. Cyclic viscoplasticity behavior and constitutive theory of high temperature structures[M]. Beijing: Science Press, 2021 (in Chinese). | |
49 | LIN J H. Durability and damage tolerance analysis methods for lightweight aircraft structures: Review and prospects[J]. International Journal of Lightweight Materials and Manufacture, 2022, 5(2): 224-250. |
50 | 刘士杰, 梁国柱. 航天飞机主发动机高压燃料涡轮泵的故障模式[J]. 航空动力学报, 2015, 30(3): 611-626. |
LIU S J, LIANG G Z. Failure modes of space shuttle main engine high-pressure fuel turbopump[J]. Journal of Aerospace Power, 2015, 30(3): 611-626 (in Chinese). | |
51 | YE S, ZHANG C C, ZHANG P Y, et al. Fatigue life prediction of nickel-based GH4169 alloy on the basis of a multi-scale crack propagation approach[J]. Engineering Fracture Mechanics, 2018, 199: 29-40. |
52 | HAN J B, WANG R Q, HU D Y, et al. Multi-scale analysis and experimental research for turbine guide vanes made of 2D braided SiCf/SiC composites in high-cycle fatigue regime[J]. International Journal of Fatigue, 2022, 156: 106697. |
53 | SAIKUMAR R Y, PATRICK E L, JACOB D H, et al. A digital twin feasibility study (Part I): Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model[J]. Engineering Fracture Mechanics, 2020, 228: 106888. |
54 | 荣克林, 洪洁. 高性能系统-航天飞行器的力学环境试验与评估[J]. 强度与环境, 2017, 44(6): 1-7. |
RONG K L, HONG J. Study of experiment and evaluation about mechanical environment for high performance system[J]. Structure & Environment Engineering, 2017, 44(6): 1-7 (in Chinese). | |
55 | 姜金朋, 刘志超, 刘筑, 等. 火箭发动机涡轮叶片疲劳寿命可靠性分析[J]. 火箭推进, 2020, 46(2): 57-63. |
JIANG J P, LIU Z C, LIU Z, et al. Reliability analysis of fatigue life for rocket engine turbine blade[J]. Journal of Rocket Propulsion, 2020, 46(2): 57-63 (in Chinese). | |
56 | JIANG F, DING Y L, SONG Y S, et al. Digital twin-driven framework for fatigue life prediction of steel bridges using a probabilistic multiscale model: Application to segmental orthotropic steel deck specimen[J]. Engineering Structures, 2021, 241: 112461. |
57 | SONG L K, BAI G C, FEI C W. Dynamic surrogate modeling approach for probabilistic creep-fatigue life evaluation of turbine disks[J]. Aerospace Science and Technology, 2019, 95: 105439. |
58 | 孙侠生. 飞机结构强度新技术[M]. 北京: 航空工业出版社, 2017. |
SUN X S. New technology of aircraft structural strength[M]. Beijing: Aviation Industry Press, 2017 (in Chinese). | |
59 | JEREZ D J, JENSEN H A, BEER M. Reliability-based design optimization of structural systems under stochastic excitation: An overview[J]. Mechanical Systems and Signal Processing, 2022, 166: 108397. |
60 | CHENG J, WANG R, LIU Z Y,et al. Robust equilibrium optimization of structural dynamic characteristics considering different working conditions[J]. International Journal of Mechanical Sciences, 2021, 210: 106741. |
61 | SACKHEIM R L. SSME 0523 incident investigation[R]. Washington,D.C.:NASA, 2002. |
62 | WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8): 48-57. |
63 | 杨宝锋, 李斌, 陈晖, 等. 液体火箭发动机推进剂泵诱导轮与离心轮的匹配[J]. 航空学报, 2019, 40(5): 122609. |
YANG B F, LI B, CHEN H, et al. Matching effect between inducer and impeller in a liquid rocket engine propellant pump[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122609 (in Chinese). | |
64 | LU Y P, TAN L, HAN Y D,et al. Cavitation-vibration correlation of a mixed flow pump under steady state and fast start-up conditions by experiment[J]. Ocean Engineering, 2022, 251: 111158. |
65 | WU Q, HUANG B, WANG G, et al. Numerical study on cavitating flow-induced vibration of liquid rocket engine inducer[J]. IOP Conference Series: Earth and Environmental Science, 2019, 240: 062045. |
66 | MÜLLER M A, TRAUDT T, SCHLECHTRIEM S. Numerical calculation of the rotordynamic coefficients of a LOX-Turbopump seal for the LUMEN LOX/LNG demonstrator rocket engine[J]. Journal of Physics: Conference Series, 2021, 1909(1): 012049. |
67 | HOLZINGER F, WARTZEK F, SCHIFFER H P, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Acoustic resonance[J]. Journal of Turbomachinery, 2016, 138(4): 041001. |
68 | LU Z B, HALIM D, CHENG L. Flow-induced noise control behind bluff bodies with various leading edges using the surface perturbation technique[J]. Journal of Sound and Vibration, 2016, 369: 1-15. |
69 | DU D H, HE E M, HUANG D Q, et al. Intense vibration mechanism analysis and vibration control technology for the combustion chamber of a liquid rocket engine[J]. Journal of Sound and Vibration, 2018, 437: 53-67. |
70 | SONG J W, SUN B. Damage localization effects of the regeneratively-cooled thrust chamber wall in LOX/methane rocket engines[J]. Chinese Journal of Aeronautics, 2018, 31(8): 1667-1678. |
71 | WOLFGANG A, JUSTIN S H, DMITRY S,et al. Experimental investigation of self-excited combustion instabilities with injection coupling in a cryogenic rocket combustor[J]. Acta Astronautica, 2018, 151: 655-667. |
72 | ZHAO X, SAMI B, ZHANG S J. Aeroelastic response of rocket nozzles to asymmetric thrust loading[J]. Computers & Fluids, 2013, 76: 128-148. |
73 | FELIX H, CHRISTOPH V S, TORBEN F,et al. Experimental lifetime study of regeneratively cooled rocket chamber walls[J]. International Journal of Fatigue, 2020, 138: 105649. |
74 | LIU S J, LIANG G Z, LIU J C, et al. Research on the fatigue of small impulse turbine blade based on the numerical simulation and experimental tests[J]. International Journal of Aerospace Engineering, 2021, 2021: 1-13. |
75 | EVGENIJ A S, IGOR N B, VLADIMIR G B, et al. Numerical study of operational processes in a GOx-kerosene rocket engine with liquid film cooling[J]. Propulsion and Power Research, 2020, 9(2): 132-141. |
76 | BEATRICE L, MATTEO F, FRANCESCO N. Modeling liquid rocket engine coolant flow and heat transfer in high roughness channels[J]. Aerospace Science and Technology, 2022, 126: 107672. |
77 | SONG J W, SUN B, XING Y Y. Thermo-structural behavior of thermal barrier coatings for thrust chamber applications[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105776. |
78 | HISHAM E, ZHANG X B, MOHAMMEDNOUR G, et al. Heat transfer enhancement of hydrogen rocket engine chamber wall by using V-shape rib[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9775-9790. |
79 | CHEN M Y, LIN L, DU D H,et al. Safety assessment of the small welded pipe system by the test and FEA[J]. International Journal of Pressure Vessels and Piping, 2021, 194: 104523. |
80 | GAO P X, YU T, ZHANG Y L,et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 83-114. |
81 | Military and Government Specs & Standards. Assessment of flexible lines for flow induced vibration(Rev E): M [S]. Military and Government Specs & Standards (Naval Publications and Form Center) (NPFC), 1991. |
82 | ASMA M, RÜDIGER U F V B U P, MOHAMMAD A E. A probabilistic study of welding residual stresses distribution and their contribution to the fatigue life[J]. Engineering Failure Analysis, 2020, 118: 104787. |
83 | SCHRÖDERS S, FIDLIN A. Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve[J]. Nonlinear Dynamics, 2021, 103(3): 2315-2327. |
84 | MIAO Y, JIANG Y C, QIU Z H, et al. Vibration transients of reservoir-pipe-valve system caused by water hammer[J]. Journal of Theoretical and Applied Mechanics, 2020, 58(4): 1037-1048. |
85 | LU G L, LUO Y J, XIE S L, et al. Transfer path analysis of rocket engine based on weighted Tikhonov regularization[J]. International Journal of Applied Electromagnetics and Mechanics, 2019, 59(3): 1019-1027. |
86 | CAO Y F, GU X J, ZHU J H, et al. Precise output loads control of load-diffusion components with topology optimization[J]. Chinese Journal of Aeronautics, 2020, 33(3): 933-946. |
87 | 王鹏辉, 李哲, 童军, 等. 基于频率管理的装备振动环境适应性提升[J]. 装备环境工程, 2021, 18(9): 7-13. |
WANG P H, LI Z, TONG J, et al. Improvement of equipment vibration environment adaptability based on frequency management[J]. Equipment Environmental Engineering, 2021, 18(9): 7-13 (in Chinese). |
[1] | 李博, 王潇. 共轴双旋翼/尾推桨/传动耦合系统动力学建模与固有特性分析[J]. 航空学报, 2024, 45(9): 528945-528945. |
[2] | 聂博文, 王亮权, 黄志银, 何龙, 杨仕鹏, 颜鸿涛, 章贵川. 复合式高速无人直升机飞行动力学建模与控制策略设计[J]. 航空学报, 2024, 45(9): 529848-529848. |
[3] | 周洪淼, 于剑桥, 于勇. 敏捷转弯伞弹系统动力学建模与分岔特性分析[J]. 航空学报, 2024, 45(7): 229012-229012. |
[4] | 高同州, 贺小帆, 王晓雷, 李紫光, 朱振涛, 詹志新. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024, 45(7): 228952-228952. |
[5] | 张帆, 程伯晗, 王鹏, 董磊. 二元共载系统退化相关的两阶段退化模型及可靠性分析[J]. 航空学报, 2024, 45(7): 229046-229046. |
[6] | 刘小川, 惠旭龙, 张欣玥, 白春玉, 闫亚斌, 李肖成, 牟让科. 典型民用飞机全机坠撞实验研究[J]. 航空学报, 2024, 45(5): 529664-529664. |
[7] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[8] | 葛向东, 吴法勇, 刘永泉, 安中彦, 乔保栋, 高强, 秦天龙, 周笑阳. 航空发动机整机振动问题研究方法及工程应用[J]. 航空学报, 2024, 45(4): 628353-628353. |
[9] | 朱清玉, 韩清凯, 王维民, 江志农. 航空发动机多支撑附件系统振动传递路径分析[J]. 航空学报, 2024, 45(4): 628303-628303. |
[10] | 张福泽. 全机日历寿命确定及相关问题[J]. 航空学报, 2024, 45(3): 229863-229863. |
[11] | 李帅, 李启行, 谌璨, 方志法, 王维民. 融合柔性基础传递函数的转子系统建模方法及验证[J]. 航空学报, 2024, 45(3): 229250-229250. |
[12] | 司和勇, 王瑶俐, 曹丽华, 陈东超. 超临界二氧化碳涡轮升速过渡中密封-转子系统的动力学行为[J]. 航空学报, 2024, 45(2): 228652-228652. |
[13] | 李子光, 成鹏, 李清廉, 白晓, 曹鹏进. 背压对气液针栓单元喷雾分布特性的影响[J]. 航空学报, 2024, 45(2): 128614-128614. |
[14] | 赵清风, 周洲, 李明浩, 徐德. 分布式动力翼-诱导翼面推进-气动耦合模型[J]. 航空学报, 2024, 45(10): 129252-129252. |
[15] | 王四季, 张羽薇, 黄开明, 吕彪, 赵海凤, 王虎, 廖明夫. 基于改进粒子群算法的直升机动力涡轮转子系统优化方法[J]. 航空学报, 2024, 45(1): 228608-228608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学