收稿日期:
2022-06-21
修回日期:
2022-07-07
接受日期:
2022-08-12
出版日期:
2023-06-15
发布日期:
2022-08-31
通讯作者:
张志强
E-mail:zqzhang@cauc.edu.com
基金资助:
Tiangang ZHANG, Jiahao HUANG, Xiaoyun HOU, Zhiqiang ZHANG()
Received:
2022-06-21
Revised:
2022-07-07
Accepted:
2022-08-12
Online:
2023-06-15
Published:
2022-08-31
Contact:
Zhiqiang ZHANG
E-mail:zqzhang@cauc.edu.com
Supported by:
摘要:
采用纳秒脉冲光纤激光器在3种不同扫描速度(900、720、540 mm/s)工艺条件下,对2A12航空铝合金表面丙烯酸聚氨酯复合漆层进行了激光清洗实验,研究了不同激光扫描速度对清洗效果的影响。实验表明,当900 mm/s时,面漆全部去除,底漆部分去除;当720 mm/s时,底漆余量进一步减少,氧化膜显露;当540 mm/s时,漆层基本除净,但部分氧化膜破坏,基材外露。研究发现,清洗过程形成了“烧蚀-等离子体冲击-烧蚀”除漆机制交互作用的特点,烧蚀会引起漆层中功能性氧化物粒子和面漆着色剂脱漆沉积,凹坑为主要清洗特征;等离子体冲击主要发生在凹坑间隔区间,其产生的爆轰波主要对漆层产生破坏或去除作用;烧蚀和等离子体冲击一方面会触发瞬态加热膨胀除漆机制,使残余漆层发生应力碎裂或剥离;另一方面将使残余漆层受到热影响,导致部分自由基发生位置重排和置换。
中图分类号:
张天刚, 黄嘉浩, 侯晓云, 张志强. 激光清洗铝合金表面复合漆层作用机制[J]. 航空学报, 2023, 44(11): 427656-427656.
Tiangang ZHANG, Jiahao HUANG, Xiaoyun HOU, Zhiqiang ZHANG. Mechanism for composite paint layer on aluminum alloy surface cleaned by laser[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 427656-427656.
表 6
图4中表面不同区域EDS结果 (at%)
测试区域 | C | O | Mg | Si | Ti | Co | Pt | S | Al | Cu | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 76.78 | 18.80 | 0.88 | 1.34 | 1.09 | 0.27 | 0.84 | ||||
A2 | 23.97 | 48.42 | 9.62 | 10.54 | 4.65 | 1.84 | 0.96 | ||||
B1 | 75.04 | 18.89 | 1.34 | 1.46 | 1.38 | 1.04 | 0.85 | ||||
B2 | 43.02 | 36.24 | 0.99 | 1.08 | 1.26 | 1.21 | 0.79 | 2.97 | 12.44 | ||
C1 | 76.68 | 18.21 | 1.09 | 0.83 | 0.99 | 1.05 | 0.81 | 0.34 | |||
C2 | 31.53 | 41.25 | 0.62 | 0.63 | 0.91 | 0.98 | 0.71 | 2.96 | 20.41 | ||
C3 | 23.32 | 12.77 | 1.22 | 0.82 | 0.73 | 1.01 | 0.72 | 0.44 | 58.18 | 0.58 | 0.21 |
表 7
原始漆层红外光谱谱带位置及对应关联结构[22-24]
振动频率/cm-1 | 振动模式 | 关联物质 |
---|---|---|
3 356 | 醇羟基O—H伸缩 | 丙烯酸树脂 |
2 928 | CH2反对称伸缩 | 异氰酸酯 |
2 852 | CH2对称伸缩 | 异氰酸酯 |
1 725 | 酯羰基C=O伸缩 | 丙烯酸酯 |
1 683 | 羰基C=O伸缩(酰胺Ⅰ) | 氨基甲酸酯单元 |
1 520 | C—N—H弯曲振动(仲酰胺酰胺Ⅱ) | 氨基甲酸酯单元 |
1 449 | CH3不对称变角 | 丙烯酸酯 |
1 380 | CH3对称变角 | 丙烯酸酯 |
1 164 | 脂肪酸酯的C—O—C伸缩(与羰基C=O相连) | 丙烯酸酯 |
1 117 | 脂肪族仲胺C—N伸缩 | 异氰酸酯、氨基甲酸酯单元 |
1 086 | 醇类C—OH伸缩 | 丙烯酸酯 |
1 065 | 醇类C—OH伸缩 | 丙烯酸酯 |
1 018 | 脂肪酸酯的C—O—C伸缩(与烷基相连) | 丙烯酸酯 |
875 | 芳环C—H面外弯曲 | 芳烃溶剂 |
756 | N—H面外弯曲 | 氨基甲酸酯单元 |
730 | CH2面内摇摆 | 长链烷基 |
700 | 芳环C—H面外弯曲 | 芳烃溶剂 |
表 8
除漆前后XPS C1s光谱的分峰结果、结合能及相对含量
状态 | 结合能/eV | 成分 | 相对含量/% |
---|---|---|---|
除漆前 | 283.87 | C—H, C—C | 6.90 |
284.40 | —CH2—, C—C, C6H6 | 36.30 | |
284.73 | CH2C(CH3)(C(O)OH) n CH2C(CH3)(C(O)OCH3) n | 48.93 | |
286.18 | CH2C(CH3)(C(O)OCH3) n CH2C(CH3)(C(O)OCH2CH2OH) n | 5.05 | |
288.26 | O—C=O, O=C—N, C—N | 2.82 | |
540 mm/s除漆后 | 284.35 | i-CH3, C—H, —CH2— | 13.50 |
284.78 | 石墨碳, C, C—C, C—H CH2C(CH3)(C(O)OH) n CH2C(CH3)(C(O)OCH3) n CH2CH(C(O)OCH3) n | 58.52 | |
286.25 | CH2CH(C(O)OCH2CH3) n CH2CH(C(O)OCH3) n CH2C(CH3)(C(O)OCH2CH3) n | 20.16 | |
288.48 | O—C=O, O=C-N, C—N CH2C(CH3)(C(O)OCH2CH3) n CH2C(CH3)(C(O)OC(CH3)3 n | 7.82 |
表 9
除漆前后XPS O1s光谱的分峰结果、结合能及相对含量
状态 | 结合能/eV | 成分 | 相对含量/% |
---|---|---|---|
除漆前 | 530.41 | TiO2, MgO, SiO2, CoO | 16.10 |
530.91 | MgO, TiO2 | 15.49 | |
531.57 | CH2C(CH3)(C(O)OCH3) n C—O, —OH | 31.58 | |
532.22 | CH2C(CH3)(C(O)OCH3) n CH2C(CH3)(C(O)OCH2CH2OH) n CH2C(CH3)(C(O)OH) n | 24.17 | |
533.44 | —C=O, —COOC—, SiO2 | 11.25 | |
535.45 | —C=O | 1.41 | |
540 mm/s除漆后 | 530.41 | TiO2, MgO, SiO2, CoO, Al2O3 | 43.15 |
531.48 | TiO1.65, Al2O3, SiO2( Al2O3)0.22, C—O, —OH CH2C(CH3)(C(O)OCH3) n CH2C(CH3)(C(O)OCH2CH(CH3)2) n | 34.69 | |
532.48 | SiO2/Si, SiO2, SiO2(Al2O3)2.1 CH2CH(C(O)OCH3) n CH2CH(C(O)OH) n CH2C(CH3)(C(O)OH) n | 16.39 | |
533.52 | CH2CH(C(O)OCH2CH3) n CH2C(CH3)(C(O)OCH2CH3) n CH2C(CH3)(C(O)OCH2CH2OH) n | 5.77 |
1 | 蔡攀. 浅谈飞机MRO大修包研究及应用[J]. 航空维修与工程, 2021(8): 40-42. |
CAI P. Brief discussion on the research and application of aircraft MRO document package[J]. Aviation Maintenance and Engineering, 2021(8): 40-42 (in Chinese). | |
2 | 何金徕, 孙秦. 民用飞机客改货的技术可行性分析[J]. 航空制造技术, 2009, 52(16): 63-65. |
HE J L, SUN Q. Technique feasibility analysis of transformation from passenger to cargo for civil aircraft[J]. Aeronautical Manufacturing Technology, 2009, 52(16): 63-65 (in Chinese). | |
3 | 何鼎, 雷骏志, 华信浩. 航空涂料与涂装技术[M]. 北京: 化学工业出版社, 2000: 176-371. |
HE D, LEI J Z, HUA X H. Aviation coatings and painting technology[M]. Beijing: Chemical Industry Press, 2000: 176-371 (in Chinese). | |
4 | 王晓东, 余锦, 貊泽强, 等. 激光脱漆技术的研究进展 [J]. 激光与光电子学进展, 2020, 57(5): 59-70. |
WANG X D, YU J, MO Z Q, et al. Research progress on laser paint stripping technology[J]. Laser and Optoelectronics Progress, 2020, 57(5): 59-70 (in Chinese). | |
5 | 武爽爽, 贾秀杰, 熊胜, 等. 面向再制造的油漆清洗技术综述[J]. 表面技术, 2021, 50(3): 51-65. |
WU S S, JIA X J, XIONG S, et al. Review of paint cleaning technology for remanufacturing[J]. Surface Technology, 2021, 50(3): 51-65 (in Chinese). | |
6 | 李兴, 管迎春. 浅述几种典型激光加工技术在航空制造领域的应用现状[J]. 航空制造技术, 2019, 62(S2): 38-45, 65. |
LI X, GUAN Y C. Study on typical laser processing technologies and applications in aeronautical manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(S2): 38-45, 65 (in Chinese). | |
7 | 蒋一岚, 叶亚云, 周国瑞, 等. 飞机蒙皮的激光除漆技术研究[J]. 红外与激光工程, 2018, 47(12): 29-35. |
JIANG Y L, YE Y Y, ZHOU G R, et al. Research on laser paint removing of aircraft surface[J]. Infrared and Laser Engineering, 2018, 47(12): 29-35 (in Chinese). | |
8 | 李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661. |
LI H Y, YANG F, GUO J W, et al. Development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661 (in Chinese). | |
9 | 雷正龙, 孙浩然, 田泽, 等. 不同时间尺度的激光对铝合金表面油漆层清洗质量的影响[J]. 中国激光, 2021, 48(6): 65-74. |
LEI Z L, SUN H R, TIAN Z, et al. Effect of laser at different time scales on cleaning quality of paint on Al alloy surfaces[J]. Chinese Journal of Lasers, 2021, 48(6): 65-74 (in Chinese). | |
10 | 赵海朝, 乔玉林, 杜娴, 等. 脉冲激光清洗铝合金表面漆层的技术研究[J]. 中国激光, 2021, 48(6): 246-259. |
ZHAO H C, QIAO Y L, DU X, et al. Research on paint removal technology for aluminum alloy using pulsed laser[J]. Chinese Journal of Lasers, 2021, 48(6): 246-259 (in Chinese). | |
11 | BRYGO F, DUTOUQUET C, LE GUERN F, et al. Laser fluence, repetition rate and pulse duration effects on paint ablation[J]. Applied Surface Science, 2006, 252(6): 2131-2138. |
12 | JASIM H A, DEMIR A G, PREVITALI B, et al. Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser[J]. Optics and Laser Technology, 2017, 93: 60-66. |
13 | 刘伟军, 赵子铭, 李强, 等. 激光清洗2A12铝合金复合漆层的技术研究[J]. 中国激光, 2022, 49(8): 140-150. |
LIU W J, ZHAO Z M, LI Q, et al. Laser cleaning technology of 2A12 aluminum alloy composite paint layer[J]. Chinese Journal of Lasers, 2022, 49(8): 140-150 (in Chinese). | |
14 | 任鑫, 初鑫. 常温镍盐封闭处理对铝阳极氧化膜性能的影响[J]. 表面技术, 2010, 39(2): 74-76. |
REN X, CHU X. The influence of sealing treatment with salt containing Ni2+ at normal temperature on properties of anodized aluminum alloy[J]. Surface Technology, 2010, 39(2): 74-76 (in Chinese). | |
15 | 佐藤敏彦,神长京子. 铝阳极氧化理论[M]. 史宏伟, 余泉和, 赵正平, 等译. 北京: 化学工业出版社, 2018: 33-62. |
Theories of aluminum anodization[M]. SHI H W, YU Q H, ZHAO Z P, et al, translated. Beijing: Chemical Industry Press, 2018: 33-62 (in Chinese). | |
16 | PATERMARAKIS G, KARAYANNIS H S. The mechanism of growth of porous anodic Al2O3 films on aluminium at high film thicknesses[J]. Electrochimica Acta, 1995, 40(16): 2647-2656. |
17 | 王德良, 冯国英, 邓国亮, 等. 基于颗粒形貌及成分分析的激光除漆去除机理研究[J]. 中国激光, 2015, 42(10): 115-121. |
WANG D L, FENG G Y, DENG G L, et al. Study of mechanism on laser paint removal based on the morphology and element composition of ejected particle[J]. Chinese Journal of Lasers, 2015, 42(10): 115-121 (in Chinese). | |
18 | LI X K, ZHANG Q H, ZHOU X Z, et al. The influence of nanosecond laser pulse energy density for paint removal[J]. Optik, 2018, 156: 841-846. |
19 | HAN J H, CUI X D, WANG S, et al. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064nm: A multi-pulse model[J]. Journal of Modern Optics, 2017, 64(19): 1947-1959. |
20 | 汪长春, 包启宇. 丙烯酸酯涂料[M]. 北京: 化学工业出版社, 2005: 109-163. |
WANG C C, BAO Q Y. Acrylate coating[M]. Beijing: Chemical Industry Press, 2005: 109-163 (in Chinese). | |
21 | 郭召恒, 周建忠, 孟宪凯, 等. HT250灰铸铁纳秒脉冲激光除漆工艺研究[J]. 中国激光, 2019, 46(10): 191-197. |
GUO Z H, ZHOU J Z, MENG X K, et al. Nanosecond-pulsed-laser paint stripping of HT250 gray cast iron[J]. Chinese Journal of Lasers, 2019, 46(10): 191-197 (in Chinese). | |
22 | PASSAUER L. A case study on the thermal degradation of an acrylate-type polyurethane wood coating using thermogravimetry coupled with evolved gas analysis[J]. Progress in Organic Coatings, 2021, 157: 106331. |
23 | 陶子斌, 郑承旺. 丙烯酸生产与应用[M]. 北京: 化学工业出版社, 2018: 180-197. |
TAO Z B, ZHENG C W. Production and application of acrylic acid[M]. Beijing: Chemical Industry Press, 2018: 180-197 (in Chinese). | |
24 | 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016: 287-408. |
WENG S F, XU Y Z. Fourier transform infrared spectrum analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016: 287-408 (in Chinese). | |
25 | 李旭华, 段宁, 刘景洋, 等. 废聚氨酯的热解及产物分析[J]. 环境污染与防治, 2009, 31(3): 6-9, 15. |
LI X H, DUAN N, LIU J Y, et al. Pyrolysis of waste polyurethane and its pyrolytic products analysis[J]. Environmental Pollution and Control, 2009, 31(3): 6-9, 15 (in Chinese). | |
26 | ZHAO H C, QIAO Y L, DU X, et al. Paint removal with pulsed laser: Theory simulation and mechanism analysis[J]. Applied Sciences, 2019, 9(24): 5500. |
27 | 袁开军, 江治, 李疏芬, 等. 聚氨酯的阻燃性机理研究进展[J]. 高分子材料科学与工程, 2006, 22(5): 1-4. |
YUAN K J, JIANG Z, LI S F, et al. The fire retardant mechanism of polyurethane[J]. Polymer Materials Science and Engineering, 2006, 22(5): 1-4 (in Chinese). | |
28 | 张天刚, 张倩, 庄怀风, 等. TC4表面Ti2SC-Ti2Ni复合结构相的自润滑激光熔覆层组织与性能[J]. 光学学报, 2020, 40(11): 133-143. |
ZHANG T G, ZHANG Q, ZHUANG H F, et al. Microstructure and properties of Ti2SC-Ti2Ni composite structural phase self-lubricating laser cladding layer on TC4 surface[J]. Acta Optica Sinica, 2020, 40(11): 133-143 (in Chinese). | |
29 | 辛建娇, 申书昌, 王佳宝. 聚酰亚胺固相微萃取涂层的制备及表面结构的XPS研究[J]. 中山大学学报(自然科学版), 2015, 54(6): 115-119. |
XIN J J, SHEN S C, WANG J B. Preparation and XPS study of polyimide solid phase microextraction coating[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(6): 115-119 (in Chinese). | |
30 | 厉蕾, 颜悦. 丙烯酸树脂及其应用[M]. 北京: 化学工业出版社, 2012: 1-97. |
LI L, YAN Y. Acrylic resin and its application[M]. Beijing: Chemical Industry Press, 2012: 1-97 (in Chinese). | |
31 | 赵海朝, 乔玉林, 杜娴, 等. 能量密度对激光清洗铝合金漆层的影响及作用机理[J]. 激光与光电子学进展, 2020, 57(13): 212-220. |
ZHAO H C, QIAO Y L, DU X, et al. Effect and mechanism of energy density on the aluminum alloy paint cleaned by laser[J]. Laser and Optoelectronics Progress, 2020, 57(13): 212-220 (in Chinese). | |
32 | 张天刚, 孙荣禄. Ti811表面原位生成纳米Ti3Al激光熔覆层的组织和性能[J]. 中国激光, 2018, 45(1): 97-104. |
ZHANG T G, SUN R L. Microstructure and properties of nano-Ti3Al laser cladding layer prepared on Ti811 alloy surface[J]. Chinese Journal of Lasers, 2018, 45(1): 97-104 (in Chinese). | |
33 | 王蔚, 李相锦, 刘伟军, 等. 激光清洗7075铝合金阳极氧化膜的工艺参数对表面质量的影响[J]. 中国激光, 2022, 49(16): 189-203. |
WANG W, LI X J, LIU W J, et al. Effect of laser cleaning process parameters on surface quality of 7075 aluminum alloy anodic oxidation film[J]. Chinese Journal of Lasers, 2022, 49(16): 189-203 (in Chinese). | |
34 | 高辽远, 周建忠, 孙奇, 等. 激光清洗铝合金漆层的数值模拟与表面形貌[J]. 中国激光, 2019, 46(5): 335-343. |
GAO L Y, ZHOU J Z, SUN Q, et al. Numerical simulation and surface morphology of laser-cleaned aluminum alloy paint layer[J]. Chinese Journal of Lasers, 2019, 46(5): 335-343 (in Chinese). | |
35 | 佟艳群, 任旭东. 纳秒脉冲激光清洗理论与技术[M]. 北京: 科学出版社, 2019: 13-36. |
TONG Y Q, REN X D. Theory and technology of nanosecond pulse laser cleaning[M]. Beijing: Science Press, 2019: 13-36 (in Chinese). | |
36 | 王思捷, 乔玉林, 黄艳斐, 等. 激光清洗技术及应用[M]. 北京: 冶金工业出版社, 2020. |
WANG S J, QIAO Y L, HUANG Y F,et al. Laser cleaning technology and its application[M]. Beijing: Metallurgical Industry Press, 2020 (in Chinese). |
[1] | 高同州, 贺小帆, 王晓雷, 李紫光, 朱振涛, 詹志新. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024, 45(7): 228952-228952. |
[2] | 应岳峰, 陈琪昊, 王卫东, 毛欣宇. 焊丝超声振动对铝合金熔化极气体保护焊缝成形及气孔的影响[J]. 航空学报, 2024, 45(2): 428711-428711. |
[3] | 唐论, 余圣甫, 郑博, 史玉升, 陈颖. 圆柱面点阵自生Al2O3铝合金粉芯丝材开发及应用[J]. 航空学报, 2023, 44(9): 626864-626864. |
[4] | 林忠钦, 于忠奇, 戴冬华, 樊晓光, 余圣甫, 顾冬冬, 李淑慧, 史玉升. 复杂高筋薄壁构件旋压-增材复合制造技术发展与展望[J]. 航空学报, 2023, 44(9): 627493-627493. |
[5] | 金士杰, 王志诚, 田鑫, 孙旭, 林莉. 基于半跨模式波的铝合金板底面缺陷TOFD检测[J]. 航空学报, 2023, 44(4): 426674-426674. |
[6] | 邹田春, 巨乐章, 管玉玺, 李泽钢, 陈红呈. 铺层方式对CFRP⁃Al胶接接头疲劳行为的影响[J]. 航空学报, 2023, 44(18): 428264-428264. |
[7] | 何盼, 卢超, 石文泽, 朱颖, 陈果, 赵莉萍. 铝合金激光超声表面检测中EMAT接收性能对比[J]. 航空学报, 2023, 44(16): 428085-428085. |
[8] | 张志强, 勾青泽, 路学成, 王浩, 曹轶然, 郭志永. 高强铝合金CMT+P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 427881-427881. |
[9] | 石文泽, 程进杰, 胡硕臻, 卢超, 陈尧. 脉冲压缩在铝薄板电磁超声导波检测中的应用[J]. 航空学报, 2022, 43(3): 425063-425063. |
[10] | 杨炳鑫, 马运五, 山河, 杨天豪, 孙靖, 李永兵. 2A12-T4铝合金自冲摩擦铆焊接头力学行为研究[J]. 航空学报, 2022, 43(2): 625111-625111. |
[11] | 李洪亮, 崔展祥, 刘世雄, 马强, 姚亦强, 雷玉成. 6061铝合金超声电弧MIG焊声电特性和工艺[J]. 航空学报, 2022, 43(2): 624969-624969. |
[12] | 姜春阳, 吴利辉, 常云龙, 薛鹏, 倪丁瑞, 肖伯律, 马宗义. 铝合金与树脂基复合材料的铆接/搅拌摩擦搭接复合焊接[J]. 航空学报, 2022, 43(2): 625190-625190. |
[13] | 徐孟嘉, 刘博生, 毕晓阳, 王振民. 激光加工双级结构对Al/CFRPEEK接头组织及性能的影响[J]. 航空学报, 2022, 43(2): 624620-624620. |
[14] | 刘浩, 陈玉华, 章文滔. Ti/Al无针搅拌摩擦搭接点焊接头组织特征[J]. 航空学报, 2022, 43(2): 624680-624680. |
[15] | 邹祺, 叶逸云, 焦俊科, 吴志生, 徐子法, 张文武. 碳纤维增强热固性复合材料-钛合金激光连接接头性能分析[J]. 航空学报, 2022, 43(2): 625037-625037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学