[1] VIARS P. The impact of IHPTET on the engine/aircraft system:AIAA-1989-2137[R]. Reston:AIAA, 1989. [2] Rolls-Royce PLC. Trent 1000-The engine walkthrough[R]. London:Rolls-Royce PLC, 2006. [3] 李晓娟. 风扇/增压级内流场特性数值模拟与设计研究[D]. 北京:北京航空航天大学, 2009:72-91. LI X J. Performance numerical investigation and design of fan/compressor[D]. Beijing:Beihang University, 2009:72-91 (in Chinese). [4] 金海良. 周向平均方法在多级轴流风扇/压气机设计与分析中的应用[D]. 北京:北京航空航天大学, 2011:41-59. JIN H L. Application of circumferential average method in multistage axial fan/compressor design and analysis[D]. Beijing:Beihang University, 2011:41-59 (in Chinese). [5] 朱芳. 民用航空发动机高通流高效率风扇/增压级设计技术研究[D]. 北京:北京航空航天大学, 2013:37-57. ZHU F. Study on design techniques of high through-flow and high efficiency fan/booster of civil aeroengine[D]. Beijing:Beihang University, 2013:37-57 (in Chinese). [6] 昌皓. 轴流压气机掠叶片流动机理与设计应用研究[D]. 北京:北京航空航天大学, 2015:53-80. CHANG H. Study on flow mechanism of blade sweep in axial compressors and the application in design process[D]. Beijing:Beihang University, 2015:53-80 (in Chinese). [7] 唐明智. 叶轮机周向不均匀性建模及对弯掠特性影响的研究[D]. 北京:北京航空航天大学, 2018:68-98. TANG M Z. Modeling and analysis of circumferential non-uniformity in turbomachinery and its influence on blade bow and sweep characteristics[D]. Beijing:Beihang University, 2018:68-98 (in Chinese). [8] 温磊. 掠叶片流动机理研究与实验分析[D]. 北京:北京航空航天大学, 2018:6-70. WEN L. Study and experimental analysis of the flow mechanism of the swept blade[D]. Beijing:Beihang University, 2018:6-70 (in Chinese). [9] DENTON J D, XU L. The exploitation of three-dimensional flow in turbomachinery design[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1998, 213(2):125-137. [10] MOHAMMED K P, RAJ D P.Investigations on axial flow fan impellers with forward swept blades[J]. Journal of Fluids Engineering, 1977, 99(3):543-547. [11] SASAKI T, BREUGELMANS F. Comparison of sweep and dihedral effects on compressor cascade performance[J]. Journal of Turbomachinery, 1998, 120(3):454-463. [12] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part I:University research and methods development[J]. Journal of Turbomachinery, 2002, 124(4):521-532. [13] CHANG H, ZHU F, JIN D H, et al. Effect of blade sweep on inlet flow in axial compressor cascades[J]. Chinese Journal of Aeronautics, 2015, 28(1):103-111. [14] 闫嘉祥. 基于整机试验的某风扇改进设计[D]. 北京:北京航空航天大学, 2019:36-45. YAN J X. Improved design of a fan based on the turbofan engine test[D]. Beijing:Beihang University, 2019:36-45 (in Chinese). [15] HORLOCK J H, DENTON J D. A review of some early design practice using computational fluid dynamics and a current perspective[J]. Journal of Turbomachinery, 2005, 127(1):5-13. [16] 桂幸民, 金东海. 航空叶轮机原理及设计基础[M]. 北京:科学出版社, 2022:92-93. GUI X M, JIN D H. Turbomachinery principles and design fundamentals[M]. Beijing:Science Press, 2022:92-93 (in Chinese). [17] BEATTY L A, SAVAGE M, EMERY J C. Low-speed cascade tests of two 45 degree swept compressor blades with constant spanwise loading:L53L07[R]. Washington, D.C.:NACA, 1954. [18] GODWIN W R. Effect of sweep on performance of compressor blade sections as indicated by swept-blade rotor, unswept-blade rotor, and cascade tests:TN 4062[R]. Washington, D.C.:NACA, 1957. [19] SMITH JR L H, YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Basic Engineering, 1963, 85(3):401-414. [20] LEWIS R I, HILL J M. The influence of sweep and dihedral in turbomachinery blade rows[J]. Journal of Mechanical Engineering Science, 1971, 13(4):266-285. [21] BLISS D, HAYDEN R, MURRAY B, et al. Design considerations for a novel low source noise transonic fan stage AIAA-1976-0577[R]. Reston:AIAA, 1976. [22] LUCAS J, WOODWARD R, MACKINNON M. Acoustic evaluation of a novel swept-rotor fan:AIAA-1978-1121[R]. Reston:AIAA, 1978. [23] HAYDEN R, BLISS D, MURRAY B, et al. Analysis and design of a high tip speed, low noise aircraft fan incorporating swept leading edge rotor and stator blades:CR-135092[R]. Washington, D.C.:NASA, 1977. [24] NEUBERT R J, HOBBS D E, WEINGOLD H D. Application of sweep to improve the efficiency of a transonic fan. I-Design[J]. Journal of Propulsion and Power, 1995, 11(1):49-54. [25] RABE D, HOYING D, KOFF S. Application of sweep to improve efficiency of a transonic fan. II-Performance and laser test results:AIAA-1991-2544[R]. Reston:AIAA, 1991. [26] CREASON T, BAGHDADI S. Design and test of a low aspect ratio fan stage:AIAA-1988-2816[R]. Reston:AIAA, 1988. [27] WENNERSTROM A J, FROST G R. Design of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio:TR-76-59[R]. Dayton:Air Force Aero-Propulsion Lab Wright-Patterson AFB,1976. [28] WENNERSTROM A, DEROSE R, LAW C, et al. Investigation of a 1500 ft/sec, transonic, high-through-flow, single-stage axial-flow compressor with low hub/tip ratio:TR-76-92[R]. Dayton:Air Force Aero-Propulsion Lab Wright-Patterson AFB,1976. [29] WENNERSTROM A J. Experimental study of a high-throughflow transonic axial compressor stage[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3):552-560. [30] WENNERSTROM A J, PUTERBAUGH S L. A three-dimensional model for the prediction of shock losses in compressor blade rows[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2):295-299. [31] HAH C, WENNERSTROM A J. Three-dimensional flowfields inside a transonic compressor with swept blades[J]. Journal of Turbomachinery, 1991, 113(2):241-250. [32] COPENHAVER W W, HAH C, PUTERBAUGH S L. Three-dimensional flow phenomena in a transonic, high-through-flow, axial-flow compressor stage[J]. Journal of Turbomachinery, 1993, 115(2):240-248. [33] PUTERBAUGH S L, COPENHAVER W W, HAH C, et al. A three-dimensional shock loss model applied to an aft-swept, transonic compressor rotor[J]. Journal of Turbomachinery, 1997, 119(3):452-459. [34] WADIA A R, SZUCS P N, CRALL D W. Inner workings of aerodynamic sweep[J]. Journal of Turbomachinery, 1998, 120(4):671-682. [35] HAH C, PUTERBAUGH S L, WADIA A R. Control of shock structure and secondary flow field inside transonic compressor rotors through aerodynamic sweep:98-GT-561[R]. New York:ASME, 1998. [36] DENTON J D, XU L. The effects of lean and sweep on transonic fan performance:GT2002-30327[R]. New York:ASME, 2002. [37] GALLIMORE S J, BOLGER J J, CUMPSTY N A, et al. The use of sweep and dihedral in multistage axial flow compressor blading-Part II:Low and high-speed designs and test verification[J]. Journal of Turbomachinery, 2002, 124(4):533-541. [38] RAMAKRISHNA P V, GOVARDHAN M. Study of sweep and induced dihedral effects in subsonic axial flow compressor passages-Part I:Design considerations-Changes in incidence, deflection, and streamline curvature[J]. International Journal of Rotating Machinery, 2009, 2009:787145. [39] RAMAKRISHNA P V, GOVARDHAN M. Combined effects of forward sweep and tip clearance on the performance of axial flow compressor stage:GT2009-59840[R]. New York:ASME, 2009. [40] KWEDIKHA A R. Aerodynamic effects of blade sweep and skew applied to rotors of axial flow turbomachinery[D]. Budapest:Budapest University of Technology and Economics, 2015:24. [41] VAD J, KWEDIKHA A R A, JABERG H. Effects of blade sweep on the performance characteristics of axial flow turbomachinery rotors[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2006, 220(7):737-749. [42] VAD J, KWEDIKHA A R A, JABERG H. Influence of blade sweep on the energetic behavior of axial flow turbomachinery rotors at design flow rate:GT2004-53544[R]. New York:ASME, 2004. [43] 桂幸民, 周拜豪. 压缩系统跨音进口级弯掠叶片空气动力学概述[J]. 航空动力学报, 1995, 10(4):407-411. GUI X M, ZHOU B H. A summary of lean-sweep aerodynamics in transonic-inlet-stages for compression system[J]. Journal of Aerospace Power, 1995, 10(4):407-411 (in Chinese). [44] ZHU F, JIN D, GUI X. Design and numerical investigation of high-through-flow transonic fans with swept and straight blade[C]//International Gas Turbine Congress, 2011. [45] GUI X M, ZHU F, WAN K, et al. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors[J]. Journal of Thermal Science, 2013, 22(5):383-394. [46] BENINI E, BIOLLO R. Aerodynamics of swept and leaned transonic compressor-rotors[J]. Applied Energy, 2007, 84(10):1012-1027. [47] RAMAKRISHNA P V, GOVARDHAN M. Numerical study of the stagger angle effects in forward swept axial compressor rotor passages:GT2010-23160[R]. New York:ASME, 2010. [48] WU C H. A general though-flow theory of fluid flow with subsonic or supersonic velocity in turbomachines of arbitrary hub and casing shapes:TN2302[R]. Washington,D.C.:NACA, 1951. [49] WU C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-. radial, and mixed-flow types:TN 2604[R]. Washington,D.C.:NASA, 1952. [50] NOVAK R A. Streamline curvature computing procedures for fluid-flow problems[J]. Journal of Engineering for Power, 1967, 89(4):478-490. [51] SMITH JR L H. The radial-equilibrium equation of turbomachinery[J]. Journal of Engineering for Power, 1966, 88(1):1-12. [52] 李根深, 陈乃兴, 强国芳. 船用燃气轮机轴流式叶轮机械气动热力学:原理、设计与试验研究)[M]. 北京:国防工业出版社, 1980:102-103. LI G S, CHEN N X, QIANG G F. Aerothermodynamics of axial turbomachinery in marine gas turbine:Principle, design, and test[M]. Beijing:National Defence Industry Press,1980:102-103 (in Chinese). [53] 桂幸民. 轴流风扇压气机可控激波跨音级设计模型研究[D]. 北京:北京航空航天大学, 1993:25-28. GUI X M.The Research on the model of controllable shock wave used in the design of transonic axial fan/compressor stage[D]. Beijing:Beihang University,1993:25-28 (in Chinese). [54] GUI X, ZHOU S. A transonic compressor design methodology including the influence of 3D passage shock waves:99-GT-078[R]. New York:ASME, 1999. [55] SIMON J F. Contribution to throughflow modelling for axial flow turbomachines[D]. Liège:University of Liège, 2007:119-154. [56] THOMAS J P, LÉONARD O. Toward a high order throughflow:investigation of the nonlinear harmonic method coupled with an immersed boundary method for the modeling of the circumferential stresses[J]. Journal of Turbomachinery, 2012, 134(1):011017. [57] WAN K, JIN H L, JIN D H, et al. Influence of non-axisymmetric terms on circumferentially averaged method in fan/compressor[J]. Journal of Thermal Science, 2013, 22(1):13-22. [58] BARALON S, ERIKSSON L E, HÅLL U. Evaluation of higher-order terms in the throughflow approximation using 3D navier-stokes computations of a transonic compressor rotor:99-GT-074[R]. New York:ASME, 1999. [59] WENNERSTROM A J. Design of highly loaded axial-flow fans and compressors[M]. White River Junction:Concepts ETI, Inc., 2000:24. [60] VAD J, KWEDIKHA A R A, HORVÁTH C, et al. Aerodynamic effects of forward blade skew in axial flow rotors of controlled vortex design[J]. Proceedings of the Institution of Mechanical Engineers, Part A:Journal of Power and Energy, 2007, 221(7):1011-1023. [61] MCNULTY G S, DECKER J J, BEACHER B F, et al. The impact of forward swept rotors on tip clearance flows in subsonic axial compressors[J]. Journal of Turbomachinery, 2004, 126(4):445-454. [62] 唐明智, 金东海, 郭昕, 等. 叶轮机通流模型周向脉动应力项建模及分析[J]. 工程热物理学报, 2018, 39(9):1935-1944. TANG M Z, JIN D H, GUO X, et al. Modeling and analysis of the circumferential fluctuation stresses in turbomachinery throughflow model[J]. Journal of Engineering Thermophysics, 2018, 39(9):1935-1944 (in Chinese). [63] TANG M Z, JIN D H, GUI X M. Modeling and numerical investigation of the inlet circumferential fluctuations of swept and bowed blades[J]. Journal of Thermal Science, 2017, 26(1):1-10. [64] WU C H, BROWN C A. A theory of the direct and inverse problems of compressible flow past cascade of arbitrary airfoils[J]. Journal of the Aeronautical Sciences, 1952, 19(3):183-196. [65] WU C, BROWN C, PRIAN V. An approximate method of determining the subsonic flow in an arbitrary stream filament of revolution cut by arbitrary turbomachine blades:TN2702[R]. Washington, D.C.:NACA, 1952. [66] THOMAS J P, LÉONARD O. Investigating circumferential non-uniformities in throughflow calculations using an harmonic reconstruction:GT2008-50328[R]. New York:ASME, 2008. [67] YUE Z X, LI Z F, JIN D H, et al. A model of inlet circumferential fluctuation in compressor cascades:GT2020-16266[R]. New York:ASME, 2020. [68] BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics[J]. Annual Review of Fluid Mechanics, 2020, 52:477-508. |