1 |
ENVIA E. Fan noise reduction: An overview[J]. International Journal of Aeroacoustics, 2002, 1(1): 43-64.
|
2 |
OWENS R E. Energy efficient engine: Propulsion system-aircraft integration evaluation: NASA-CR-159488[R]. Washington, D.C.: NASA,1979.
|
3 |
NEISE W, ENGHARDT L. Technology approach to aero engine noise reduction[J]. Aerospace Science and Technology, 2003, 7(5): 352-363.
|
4 |
LIU X R, ZHAO D, GUAN D, et al. Development and progress in aeroacoustic noise reduction on turbofan aeroengines[J]. Progress in Aerospace Sciences, 2022, 130: 100796.
|
5 |
GOLDSTEIN A W, GLASER F W, COATS J W. Acoustic properties of a supersonic fan: NASA-TN-D-7096[R]. Washington, D.C.: NASA, 1973.
|
6 |
KAPLAN B, NICKE E, VOSS C. Design of a highly efficient low-noise fan for ultra-high bypass engines[C]∥ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 185-194.
|
7 |
葛健, 柳阳威, 周振华, 等. 吸力面波系分布对风扇激波噪声的影响[J]. 工程热物理学报, 2018, 39(11): 2389-2397.
|
|
GE J, LIU Y W, ZHOU Z H, et al. The influence of wave system on the suction surface on the buzz-saw noise of turbofan[J]. Journal of Engineering Thermophysics, 2018, 39(11): 2389-2397 (in Chinese).
|
8 |
ENVIA E, NALLASAMY M. Design selection and analysis of a swept and leaned stator concept[J]. Journal of Sound and Vibration, 1999, 228(4): 793-836.
|
9 |
WOODWARD R P, ELLIOTT D M, HUGHES C E, et al. Benefits of swept-and-leaned stators for fan noise reduction[J]. Journal of Aircraft, 2001, 38(6): 1130-1138.
|
10 |
KHALETSKIY Y D, POCHKIN Y S. Fan noise reduction of an aircraft engine by inclining the outlet guide vanes[J]. Acoustical Physics, 2015, 61: 101-108.
|
11 |
张伟光, 王晓宇, 孙晓峰. 叶片弯掠组合设计对风扇气动噪声的被动控制[J]. 航空学报, 2017, 38(2): 167-175.
|
|
ZHANG W G, WANG X Y, SUN X F. Passive control of fan noise by vane sweep and lean[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 167-175 (in Chinese).
|
12 |
ZHANG W G, WANG X Y, JING X D, et al. Three-dimensional analysis of vane sweep effects on fan interaction noise[J]. Journal of Sound and Vibration, 2017, 391: 73-94.
|
13 |
LIANG G Q, WANG J C, CHEN Y, et al. The study of owl’s silent flight and noise reduction on fan vane with bionic structure[J]. Advances in Natural Science, 2010, 3: 192-198.
|
14 |
TONG F, QIAO W Y, XU K B, et al. On the study of wavy leading-edge vanes to achieve low fan interaction noise[J]. Journal of Sound and Vibration, 2018, 419: 200-226.
|
15 |
乔渭阳, 仝帆, 陈伟杰, 等. 仿生学气动噪声控制研究的历史、现状和进展[J]. 空气动力学学报, 2018, 36(1): 98-121.
|
|
QIAO W Y, TONG F, CHEN W J, et al. Review on aerodynamic noise reduction with bionic configuration[J]. Acta Aerodynamica Sinica, 2018, 36(1): 98-121 (in Chinese).
|
16 |
TSUCHIYA N, NAKAMURA Y, YAMAGATA A, et al. Fan noise prediction using unsteady CFD analysis: AIAA-2002-2491[R]. Reston: AIAA, 2002.
|
17 |
CAROLUS T, SCHNEIDER M, REESE H. Axial flow fan broad-band noise and prediction[J]. Journal of Sound and Vibration, 2007, 300(1/2): 50-70.
|
18 |
HOLEWA A, GUÉRIN S, NEUHAUS L, et al. Tones from an aero-engine fan: Comparison between harmonic-balance simulation and experiment: AIAA-2016-3060[R]. Reston: AIAA, 2016.
|
19 |
AKHTAR T T, LI X D, TANG X L. Hybrid CFD-CAA numerical simulation of rotor-stator interaction tonal noise[C]∥2019 16th International Bhurban Conference on Applied Sciences and Technology. Piscataway: IEEE Press, 2019: 697-702.
|
20 |
王良锋, 乔渭阳, 纪良, 等. 基于流场/声场混合模型的叶轮机械单音噪声研究[J]. 航空学报, 2014, 35(9): 2481-2490.
|
|
WANG L F, QIAO W Y, JI L, et al. Turbomachinery tonal noise study based on flow-field/acoustic-field hybrid model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9): 2481-2490 (in Chinese).
|
21 |
LEBRUN M, FAVRE C. Fan-OGV unsteady Navier-Stokes computation using an adapted acoustic mesh: AIAA-2004-2995[R]. Reston: AIAA, 2004.
|
22 |
KAZAWA J, HORIGUCHI Y, SAIKI K, et al. Numerical study on fan noise generated by rotor-stator interaction: AIAA-2007-3681[R]. Reston: AIAA, 2007.
|
23 |
STEGER M, MICHEL U, ASHCROFT G, et al. Tone noise reduction of a turbofan engine by additional aerodynamical blade forces: AIAA-2010-3982[R]. Reston: AIAA, 2010.
|
24 |
VAN ZANTE D, ENVIA E. Simulation of turbine tone noise generation using a turbomachinery aerodynamics solver: AIAA-2009-3282[R]. Reston: AIAA, 2009.
|
25 |
FREY C, ASHCROFT G, KERSKEN H P. Simulations of unsteady blade row interactions using linear and non-linear frequency domain methods[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015.
|
26 |
LINDBLAD D, ANDERSSON N. Validating the harmonic balance method for turbomachinery tonal noise predictions: AIAA-2017-1171[R]. Reston: AIAA, 2017.
|
27 |
ZHAO L, QIAO W Y, JI L. Computational fluid dynamics simulation of sound propagation through a blade row[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2210-2217.
|
28 |
OVENDEN N C, RIENSTRA S W. Mode-matching strategies in slowly varying engine ducts[J]. AIAA Journal, 2004, 42(9): 1832-1840.
|
29 |
BOULEY S, FRANÇOIS B, ROGER M, et al. On a mode-matching technique for sound generation and transmission in a linear cascade of outlet guide vanes: AIAA-2015-2825[R]. Reston: AIAA, 2015.
|
30 |
WOHLBRANDT A, WECKMÜLLER C, GUÉRIN S. A robust extension to the triple plane pressure mode matching method by filtering convective perturbations[J]. International Journal of Aeroacoustics, 2016, 15(1/2): 41-58.
|
31 |
WILSON A. A method for deriving tone noise information from CFD calculations on the aeroengine fan stage: ADP014097[R/OL]. [2023-02-10]. .
|
32 |
GUÉRIN S. Improvement of the triple-plane pressure mode matching technique and application to harmonic balance simulations[C]∥16th International Symposium on Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines. 2022.
|
33 |
TYLER J M, SOFRIN T G. Axial flow compressor noise studies[M]. Warrendale: SAE International, 1962: 309-332.
|