张永杰1, 崔博1(), 王明振2, 张楚哲2, 罗琳胤3, 陈向明4, 刘小川4
收稿日期:
2023-03-08
修回日期:
2023-05-06
接受日期:
2023-06-19
出版日期:
2023-11-15
发布日期:
2023-06-21
通讯作者:
崔博
E-mail:cuibo0112@mail.nwpu.edu.cn
基金资助:
Yongjie ZHANG1, Bo CUI1(), Mingzhen WANG2, Chuzhe ZHANG2, Linyin LUO3, Xiangming CHEN4, Xiaochuan LIU4
Received:
2023-03-08
Revised:
2023-05-06
Accepted:
2023-06-19
Online:
2023-11-15
Published:
2023-06-21
Contact:
Bo CUI
E-mail:cuibo0112@mail.nwpu.edu.cn
Supported by:
摘要:
水陆两栖飞机是可以执行例如地面监视、海上救援、森林消防等多种复杂任务的多功能飞机。复杂的任务环境需要水陆两栖飞机具有良好的着水性能以应对水面起降及水上滑行需求。因此,用以改进水陆两栖飞机设计的着水试验与分析方法被认为是保障飞机正常水上工作和预防灾难性结构故障的重中之重。本文对水陆两栖飞机的着水试验与相关分析方法进行了系统的文献综述。首先,介绍了水陆两栖飞机及其船身式下机身与浮筒等着水结构的发展历程及发展趋势。其次,重点对水陆两栖飞机材料级、组件级、结构级和全机着水试验以及着水载荷模拟试验进行介绍。随后,对水陆两栖飞机相关理论分析方法以及主要流行的仿真分析方法进行了介绍。然后,对其他飞行器着水试验与相关理论和数值分析方法进行综述。最后,对水陆两栖飞机着水试验与分析方法的发展现状进行总结,并探讨水陆两栖飞机着水试验与分析方法的技术挑战及未来可能的发展方向。
中图分类号:
张永杰, 崔博, 王明振, 张楚哲, 罗琳胤, 陈向明, 刘小川. 水陆两栖飞机着水试验与理论分析方法研究进展[J]. 航空学报, 2023, 44(21): 528665-528665.
Yongjie ZHANG, Bo CUI, Mingzhen WANG, Chuzhe ZHANG, Linyin LUO, Xiangming CHEN, Xiaochuan LIU. Research progress of amphibious aircraft water landing test and theoretical analysis methods[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528665-528665.
表 1
部分典型着水试验
结构尺度 | 文献 | 水面状态 | 模型设计 | 释放设备形式 | 入水速度/( | 入水角度 | 结构响应 |
---|---|---|---|---|---|---|---|
材料 | Battley等[ | 直径3.5 m,水深1.5 m的圆柱形水池 | 复合材料三明治结构板 | SSTS系统 | 0.5~6 | 10°~40° | 入水时龙骨处应变先增大,后保持恒定;舷处应变在板件入水时并未增加,在板件入水一半时迅速上升。 |
Huera-Huarrte等[ | 40 m×1.09 m×0.61 m的水池 | 复合夹芯板 | SITS系统 | 3.38~5.17 | 0.3°~25° | 当板件与水面开始接触,总力迅速增加,直到板件被彻底淹没,此时总力达到最大值。 | |
Battley和Allen[ | 直径1.4 m水深3.5 m的圆柱形水池 | 复合夹芯板 | SSTS系统 | 1~8 | 0°~40° | 面板柔韧性对总力有影响,特别是低刚度面板具有较高的峰值力。 | |
Hassoon等[ | 3 m×2 m×2 m的水池 | 复合夹芯板 | 伺服坠撞系统 | 4~10 | 垂直入水,斜升角10° | 损坏首先出现在夹紧区域的面板末端,并向中心扩展。中心剪切损伤导致弯曲强度降低,并增加沿界面的法向应力和剪切应力, | |
Hassoon等[ | 3 m×2 m×2 m的水池 | 复合夹芯板 | 伺服坠撞系统 | 4~10 | 垂直入水,斜升角10° | 弹性板比刚性板的峰值载荷更大,弹性板具有显著的动态噪声问题。 | |
组件 | Xie等[ | 150 m×7.5 m×3.5 m的水池 | 复合材料船体截面 | 自由下落系统 | 2.01~3.42 | 垂直入水 | 船体截面入水瞬间应力达到最大值,速度显著降低,之后速度出现高频振荡。 |
部件 | Lin和Shieh[ | 20 m×0.8 m×0.6 m的波浪水池 | 平底船体 | 自由下落系统 | 0.44~1.98 | 由圆筒安装角度确定 | 当平底接触水面时,水花会在平底周围飞溅出来。同时,气泡在边缘附近形成。 |
Yettou等[ | 30 m×2 m×1 m的水池 | 楔形体结构 | 自由下落系统 | 4.43~5.05 | 垂直入水,斜升角为15°~35° | 两种不同的下降高度的楔形体在撞击水面时,楔形体速度均在撞击后迅速减小,两条曲线趋向于融合成一条单一的曲线。 | |
Panciroli等[ | 0.8 m×0.32 m ×0.32 m的水池 | 曲面楔形体结构 | 自由下落系统 | 2.21~4.43 | 垂直入水 | 在结构入水过程中,运动物体的动能很大一部分会转化为自由液面抬升所产生的势能以及自由面飞溅的动能部分。 | |
Anghileri等[ | 直径8 m、深1.1 m的水池 | 楔形体 | 自由下落系统 | 4.3~8.6 | 垂直入水 | 在冲击减速和压力方面的试验的可重复性证实了测试和收集数据的可靠性。 | |
褚林塘等[ | 平静水面 | 楔形体 | 自由下落系统 | 3~4 | 垂直入水 | 楔形体着水冲击载荷大小与楔形体重量及入水速度正相关,带舭弯的楔形体模型相较无舭弯模型对速度及重量变化更加敏感。 | |
唐彬彬等[ | 510 m×6.5 m×5 m的水池 | 单船身模型 | 拖曳水池试验 | 0.17~0.75倍离水速度 | 纵倾角5°和4.3° | 增加鳍式浮筒安装高度改善水面滑行稳定性,减小了水面滑行中水阻力。 | |
Fisher[ | 平静水面 | 加装水橇结构的飞机 | 滑轨弹射 | 36.6~49.2 | 2°~10° | 水橇可在多种入水姿态下显著降低飞机入水冲击时所受的压力。 | |
高霄鹏等[ | 平静水面 | 加装水橇结构的飞机 | 拖曳水池试验 | 垂向速度0.7,有水平速度 | 6° | 船身中部先触水,随后艏部与水接触受到冲击力迅速抬起,机身脱离水面一小段距离,随后落下。 | |
整机 | 王明振等[ | 平静水面 | 某型水陆两栖飞机缩比模型 | 拖行后释放 | 模型垂向速度1,有水平速度 | 5°~7° | 模型姿态出现先小幅低头后大幅抬头的趋势。 |
黄淼等[ | 平静水面 | 某型水陆两栖飞机缩比模型 | 拖曳水池试验 | 离水速度 | 平均为4.93° | 飞机滑行起飞过程中,随速度增加参与滑水的船体面积减小,水阻力减小 | |
焦俊等[ | 开阔自然水域,未测浪高 | 框架结构,复合材料蒙皮 | 自由飞 | 与实机对应 | 7° | 着水瞬间出现较大压力,着水滑行阶段因水上跳跃而出现二次峰值。 | |
Guo等[ | 开阔水域 | 某型水陆两栖飞机缩比模型 | 自主起飞 | 2~14 | 未提及 | 随着模型速度的增加,水体逐渐与断阶分离,在断阶后面形成充满空气的空腔。 |
1 | BLOCKLEY R, SHYY W. Encyclopedia of aerospace engineering[M]. Chichester: Wiley, 2010. |
2 | BROWN D R. Is there a role for modern day seaplanes in open ocean search and rescue?[D]. Fort Leavenworth: U.S. Command and General Staff College, 1997: 1-65. |
3 | HORIUCHI Y. Sudden decline of flying-boat commercial airlines in 1950s: Its cause and implications for revival[J]. Journal of Literature and Art Studies, 2014, 4(7): 588-598. |
4 | LEVIS E. Design synthesis of advanced technology, flying wing seaplanes[D]. London: Imperial College London, 2011: 2-5. |
5 | WAGNER W, STRATER B, MAJKA A. Report on requirements for new seaplane transport system as integrated part of future sea/land/air transportation system: FUSETRA-D5[R]. Brussels: European Commission, 2011. |
6 | DE VERGERON K L. India and the EU: What opportunities for defence cooperation? [EB/OL]. (2015-07-09)[2023-03-08]. . |
7 | LUBIS A, SURYA B A. Feasibility analysis of n219 aircraft routing in timika[J]. Journal of Business and Management, 2014, 3(2): 255-66. |
8 | MAJKA A, WAGNER W, STRäTER B. Requirements for a future seaplane/amphibian transport system: FUSETRA_D51[R]. Brussels: European Commission, 2011. |
9 | KREIN A, WILLIAMS G. Flightpath 2050: Europe’s vision for aeronautics[C]∥ KNORZER D, SZODRUCH J. Innovation for Sustainable Aviation in a Global Environment: Proceedings of the Sixth European Aeronautics Days. Madrid: IOS Press, 2012, 30. |
10 | YANG X B, WANG T M, LIANG J H, et al. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74: 131-151. |
11 | SENDNER F M. An energy-autonomous UAV swarm concept to support sea-rescue and maritime patrol missions in the Mediterranean sea[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(1): 112-123. |
12 | GUDMUNDSSON S. General aviation aircraft design: Applied methods and procedures[M].Oxford: Butterworth-Heinemann, 2014. |
13 | LIEM R P. Review of design aspects and challenges of efficient and quiet amphibious aircraft[J]. Journal of Physics: Conference Series, 2018, 1005: 012027. |
14 | 肖琴, 罗帆. 两栖水上飞机起降安全风险传播机制[J]. 交通信息与安全, 2022, 40(1): 1-9. |
XIAO Q, LUO F. Propagation mechanism of safety risk during take-off and landing of amphibious seaplanes based on D-SEIRS model[J]. Journal of Transport Information and Safety, 2022, 40(1): 1-9 (in Chinese). | |
15 | 黄领才, 雍明培. 水陆两栖飞机的关键技术和产业应用前景[J]. 航空学报, 2019, 40(1): 522708. |
HUANG L C, YONG M P. Key technologies and industrial application prospects of amphibian aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522708 (in Chinese). | |
16 | MACDONALD C, BROOKS C, MCGOWAN R. Survival from Canadian seaplane water accidents: 1995 to 2019[J]. Aerospace Medicine and Human Performance, 2021, 92(10): 798-805. |
17 | CAMPBELL J C, VIGNJEVIC R. Simulating structural response to water impact[J]. International Journal of Impact Engineering, 2012, 49: 1-10. |
18 | TOSO N. Contribution to the modelling and simulation of aircraft structures impacting on water[D]. Stuttgart: Universität Stuttgart, 2009. |
19 | XIAO Q, LUO F, LI Y P. Risk assessment of seaplane operation safety using Bayesian network[J]. Symmetry, 2020, 12(6): 888. |
20 | 中国民用航空局. 运输类飞机适航标准: CCAR-25 [S]. 北京:中国民用航空局, 2016. |
Civil Aviation Administration of China. Airworthiness standards of transport category aircraft: CCAR-25 [S]. Beijing:Civil Aviation Administration of China, 2016 (in Chinese). | |
21 | 刘永军. 运-12双浮筒式水上飞机改型设计[D]. 南京: 南京航空航天大学, 2008. |
LIU Y J. Modification design of Y-12 double float seaplane[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008 (in Chinese). | |
22 | BAHULEKAR S S. Effect of spray rails on takeoff performance of amphibian aircraft[D]. Daytona Beach: Embry-Riddle Aeronautical University, 2022. |
23 | CANAMAR LEYVA A L. Seaplane conceptual design and sizing[D]. Glasgow: University of Glasgow, 2012. |
24 | LAWRENCE B L. The American institute of aeronautics and astronautics library[J]. Science & Technology Liraries, 1987, 7(2): 7-14. |
25 | LANGLEY M. Seaplane float and hull design[J]. The Aeronautical Journal, 1935, 39(298): 995-996. |
26 | 《飞机设计手册》总编委会. 飞机设计手册第4册:军用飞机总体设计[M]. 北京:航空工业出版社, 2005: 940-1016. |
Editorial Board of Aireraft Design Manual. Aircraft design manual Part4: Overall design of military aireraft[M]. Beijing: Aviation Industry Press, 2005: 940-1016 (in Chinese). | |
27 | 飞机设计员手册编辑委员会. 飞机设计员手册[M]. 北京:国防工业出版社, 1965. |
Aircraft Designer’s Handbook Editorial Board. Aircraft designer’s manual[M]. Beijing: National Defense Industry Press, 1965. | |
28 | DAWSON J R, WADLIN K L. Preliminary tank tests of naca hydro-skis for high-speed airplanes: L7104[R]. Washington D. C.: NACA, 1947. |
29 | 高霄鹏, 孙培成, 董祖舜, 等. 支柱式沉浸水橇降载性能相关影响因素[J]. 北京航空航天大学学报, 2016, 42(2): 236-242. |
GAO X P, SUN P C, DONG Z S, et al. Influence of hydro-ski load reducing performance corresponding on some parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2): 236-242 (in Chinese). | |
30 | NICOLAOU S. Flying boats & seaplanes: A history from 1905[M]. Bideford: Bay View Books, 1998. |
31 | SAZAK E. Parametric investigation of hull shaped fuselage for amphibious UAV[D]. Ankara: Middle East Technical University, 2017. |
32 | HARPER H J C. The development of the float seaplane[J]. Royal United Services Institution Journal, 1938, 83(531): 552-561. |
33 | EDMONDS C H K. Naval uses for seaplanes and flying boats[J]. Royal United Services Institution Journal, 1928, 73(491): 513-517. |
34 | STINTON D. Aero-marine design and flying qualities of floatplanes and flying-boats[J]. The Aeronautical Journal, 1987, 91(903): 97-127. |
35 | SMIT P B, HOUGHTON I A, JORDANOVA K, et al. Assimilation of significant wave height from distributed ocean wave sensors[J]. Ocean Modelling, 2021, 159: 101738. |
36 | LONG B. The navy seadart supersonic seaplane: AIAA-1993-3941[R]. Reston: AIAA, 1993. |
37 | VITALY Z, ALEXANDR M. Development trends of amphibian’s shape[C]∥ 29th Congress of the International Council of the Aeronautical Sciences (ICAS). St. Petersburg: ICAS. 2014: 0910. |
38 | ODEDRA J, HOPE G, KENNELL C. Use of seaplanes and integration within a sea base: ADA476447[R]. West Bethesda: Naval Surface Warfare Center, 2004. |
39 | STEINER M F. Ditching tests with a 1/11-size model of the Army B-25 airplane in NACA tank number 2 and on an outdoor catapult: N-62-65619[R]. Washington, D.C.: NACA, 1944. |
40 | THOMPSON W. Ditching investigation of a 1/30-scale dynamic model of a heavy jet transport airplane: NASA-TM-X-2445[R]. Washington, D.C.: NASA, 1972. |
41 | GRETSCH J, HENRY M, JIVANI M, et al. A virtual aerospace crashworthiness modeling platform: Part I, substantiation water ditching trials: AIAA-2012-0687[R]. Reston: AIAA, 2012. |
42 | HU W, WANG Y H, CHEN C H. Numerical simulation of aircraft ditching based on ALE method[J]. Applied Mechanics and Materials, 2014, 668-669: 490-493. |
43 | THOMPSON W C. Ditching Investigation of a dynamic model of a HU2K-1 helicopter: N-AM-42 [R], Washington, D.C.: NACA, 1961. |
44 | PENTECÔTE N, VIGLIOTTI A. Simulation of the impact on water ofa subfloor component and a full-scale WG30 helicopter[C]∥AHS International 58th Annual Forum. Köln: DLR, 2002. |
45 | THO C, SPARKS C, SAREEN A. Hard surface and water impact simulations of two helicopter subfloor concepts[C]∥ American Helicopter Society International. proceedings of the Proceedings of the 60th Annual Forum of the American Helicopter Society. Baltimore: Curran Associates Inc., 2004: 1474-1490. |
46 | HUGHES K, CAMPBELL J. Helicopter crashworthiness: A chronological review of research related to water impact from 1982 to 2006[J]. Journal of the American Helicopter Society, 2008, 53(4): 429. |
47 | YANG X F, MA J X, WEN D S, et al. Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review[J]. Progress in Aerospace Sciences, 2020, 114: 100618. |
48 | BUYUKOZTURK O, HIBBITT H, SORENSEN E P. Water impact analysis of space shuttle solid rocket motor by the finite element method: NASA-CR-120319[R]. Washington, D.C.: NASA, 1974. |
49 | MITCHELL K N, MAHADEVAN S. SRB splashdown analysis and structural damage risk assessment[C]∥ Engineering, Construction, and Operations in Challenging Environments. Reston: American Society of Civil Engineers, 2004: 461-8. |
50 | BROWN W K, ROTHSTEIN J D, FOSTER P. Human response to predicted Apollo landing impacts in selected body orientations[J]. Aerospace Medicine, 1966, 37(4): 394-8. |
51 | ROSENBAUM J D, JENSEN W R. Water impact of the mercury capsule: Correlation of analysis with NASA tests[J]. AIAA Journal, 1963, 1(5): 1190-1191. |
52 | BROOKS J R, ANDERSON L A. Dynamics of a space module impacting water[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 509-515. |
53 | LORENZ R D. Splashdown and post-impact dynamics of the Huygens probe: model studies[C]∥Proceedings of the Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Lisbon: ESA Publications Division, 2004: 117-123. |
54 | BATTERSON S A. The NACA Impact basin and water landing tests of a float model at various velocities and weights: ACR-No.L4H15[R]. Washington, D.C.: NACA, 1946. |
55 | MILWITZKY B. Generalized theory for seaplane impact: NACA-TR-1103[R]. Washington, D.C.: NACA, 1952. |
56 | NWCG Committee Correspondence. Water scooping aircraft operations: NIAC-M-21-06A[R]. Boise: National Wildfire Coordinating Group (NWCG), 2021. |
57 | CHOWDHURY A, PARANJAPE P, PALANKAR A. Design and development of an amphibious ethereal firefighting aircraft capable to carry both water and fire stifling fluid synthetic compounds[J]. International Journal of Innovative Science and Research Technology, 2022, 7(9): 509-547. |
58 | AHMAD MALIK T H, BAIG K, AHMAD BAQAI K, et al. Review on advance seaplane conceptual design adapting trimaran boat hull concept[C]∥ 2021 Seventh International Conference on Aerospace Science and Engineering (ICASE). Piscataway: IEEE Press, 2022: 1-5. |
59 | CANAMAR A, SMRCEK L. Visionary concept: Advance amphibious preliminary design[J]. International Journal of Engineering Research and Development, 2012, 3(6): 1-12. |
60 | JUSTICE R, HAYS A, PARROTT E. The future of very large subsonic transports[J]. Transportation Beyond 2000: Technologies Needed for Engineering Design, 1996. |
61 | VARYUKHIN A, OVDIENKO M, VLASOV A, et al. Unmanned fire-fighting amphibious aircraft with distributed turboelectric propulsion system[C]∥ 32nd Congress of the International Council of the Aeronautical Sciences. Bonn: ICAS, 2021: 0451. |
62 | SIDDALL R, KOVAČ M. Launching the AquaMAV: Bioinspired design for aerial-aquatic robotic platforms[J]. Bioinspiration & Biomimetics, 2014, 9(3): 031001. |
63 | ZINK G. Computational studies on the effect of water impact on an unmanned air vehicle[D]. Iowa State University, Master of Science, 2008. doi:10.31274/rtd-180813-16429 |
64 | ESWARAN P, TAMILMANI B, RARITY KARNA D, et al. Triphibian - an urban future transportation system[J]. IOP Conference Series: Materials Science and Engineering, 2020, 764(1): 012035. |
65 | HUGHES K, VIGNJEVIC R, CAMPBELL J, et al. From aerospace to offshore: Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems[J]. International Journal of Impact Engineering, 2013, 61: 48-63. |
66 | RECHARD E, JAMES C, ALAN D, et al. Aircraft crash survival design guide Volume Ⅲ: USAAVSCOM TR 89-D-22C[R]. Phoenix: Simula Inc., 1989. |
67 | HUGHES K, VIGNJEVIC R, CAMPBELL J. Experimental observations of an 8 m/s drop test of a metallic helicopter underfloor structure onto a hard surface: Part 1[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221: 661-678. |
68 | HUGHES K, VIGNJEVIC R, CAMPBELL J. Experimental observations of an 8 m/s drop test of a metallic helicopter underfloor structure onto water: Part 2[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221: 679-690. |
69 | HUGHES K. Application of improved Lagrangian techniques for helicopter crashworthiness on water[D]. Cranfield: Cranfield University, 2005: 118-119. |
70 | ROUSE M, JEGLEY D, MCGOWAN D, et al. Utilization of the building-block approach in structural mechanics research: AIAA-2005-1874[R].Reston: AIAA, 2005. |
71 | BATTLEY M, STENIUS I, BREDER J, et al. Dynamic characterisation of marine sandwich structures[M]∥THOMSEN O T, BOZHEVOLNAYA E, LYCKEGAARD A, editors. Sandwich Structures 7: Advancing with Sandwich Structures and Materials. Berlin: Springer, 2005: 537-546. |
72 | HUERA-HUARTE F J, JEON D, GHARIB M. Experimental investigation of water slamming loads on panels[J]. Ocean Engineering, 2011, 38(11-12): 1347-1355. |
73 | BATTLEY M, ALLEN T. Servo-hydraulic system for controlled velocity water impact of marine sandwich panels[J]. Experimental Mechanics, 2012, 52(1): 95-106. |
74 | HASSOON O H, TARFAOUI M, MALKI ALAOUI A EL. An experimental investigation on dynamic response of composite panels subjected to hydroelastic impact loading at constant velocities[J]. Engineering Structures, 2017, 153: 180-190. |
75 | HASSOON O H, TARFAOUI M, MALKI ALAOUI A EL, et al. Experimental and numerical investigation on the dynamic response of sandwich composite panels under hydrodynamic slamming loads[J]. Composite Structures, 2017, 178: 297-307. |
76 | HASSOON O H, TARFAOUI M, MOUMEN A EL, et al. Mechanical performance evaluation of sandwich panels exposed to slamming impacts: Comparison between experimental and SPH results[J]. Composite Structures, 2019, 220: 776-783. |
77 | XIE H, REN H L, QU S, et al. Numerical and experimental study on hydroelasticity in water-entry problem of a composite ship-hull structure[J]. Composite Structures, 2018, 201: 942-957. |
78 | LIN M C, SHIEH L D. Simultaneous measurements of water impact on a two-dimensional body[J]. Fluid Dynamics Research, 1997, 19(3): 125-148. |
79 | YETTOU E M, DESROCHERS A, CHAMPOUX Y. Experimental study on the water impact of a symmetrical wedge[J]. Fluid Dynamics Research, 2006, 38(1): 47-66. |
80 | PANCIROLI R, SHAMS A, PORFIRI M. Experiments on the water entry of curved wedges: High speed imaging and particle image velocimetry[J]. Ocean Engineering, 2015, 94: 213-222. |
81 | ANGHILERI M, CASTELLETTI L M L, FRANCES CONI E, et al. Rigid body water impact-experimental tests and numerical simulations using the SPH method[J]. International Journal of Impact Engineering, 2011, 38(4): 141-151. |
82 | 褚林塘, 孙丰, 廉滋鼎, 等. 水陆两栖飞机船体着水载荷数值与试验分析[J]. 振动与冲击, 2016, 35(15): 211-215. |
CHU L T, SUN F, LIAN Z D, et al. Numerical simulation and tests for water load of amphibious aircraft hulls[J]. Journal of Vibration and Shock, 2016, 35(15): 211-215 (in Chinese). | |
83 | 唐彬彬, 吴彬, 王明振, 等. 水陆两栖飞机变鳍式浮筒安装高度的水动性能[J]. 科学技术与工程, 2018, 18(36): 132-135. |
TANG B B, WU B, WANG M Z, et al. Hydrodynamic performance of amphibious aircraft of different installation height of sponson[J]. Science Technology and Engineering, 2018, 18(36): 132-135 (in Chinese). | |
84 | FISHER L J. Model ditching investigations of three airplanes equipped with hydro-skis: NACA-RM-L9K23[R]. Washington D.C.: NACA, 1950. |
85 | 高霄鹏, 孙培成, 董祖舜, 等. 水橇参数对水橇降载性能的影响研究[J]. 船舶力学, 2017, 21(10): 1235-1243. |
GAO X P, SUN P C, DONG Z S, et al. Study on the influence of hydro-ski load reducing performance of hydro-ski parameters[J]. Journal of Ship Mechanics, 2017, 21(10): 1235-1243 (in Chinese). | |
86 | 王明振, 吴彬, 李新颖, 等. 水陆两栖飞机平静水面着水冲击载荷影响因素分析[J]. 科学技术与工程, 2016, 16(12): 298-302. |
WANG M Z, WU B, LI X Y, et al. An experimental study about impact load of the amphibious aircraft landing on the calm water[J]. Science Technology and Engineering, 2016, 16(12): 298-302 (in Chinese). | |
87 | 黄淼, 褚林塘, 李成华, 等. 大型水陆两栖飞机抗浪能力研究[J]. 航空学报, 2019, 40(1): 522335. |
HUANG M, CHU L T, LI C H, et al. Seakeeping performance research of large amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522335 (in Chinese). | |
88 | 焦俊, 张家旭, 王明振, 等. 水陆两栖飞机自由飞模型着水冲击试验技术研究[C]∥ 中国航空学会. 2015年第二届中国航空科学技术大会论文集.北京: 国防工业出版社, 2015: 5. |
JIAO J, ZHANG J X, WANG M Z, et al. Study on water entry test techniques with amphibian free flight model [C]∥ Chinese Society of Aeronautics and Astronautics. Proceedings of the 2nd China Aviation Science and Technology Conference 2015. Beijing: National Defense Industry Press, 2015: 5 (in Chinese). | |
89 | GUO Y, MA D L, YANG M Q, et al. Numerical investigation on the resistance characteristics of a flying boat planing in calm water[J]. Applied Ocean Research, 2021, 117: 102929. |
90 | PENNY R E. Seaplane development[J]. The Journal of the Royal Aeronautical Society, 1927, 31(201): 844-885. |
91 | CHICKEN S H. Conceptual design methodologies for waterborne and amphibious aircraft[D]. Cranfield: Cranfield University, 1999. |
92 | HANDLER E H. Tilt and vertical float aircraft for open ocean operations[J]. Journal of Aircraft, 1966, 3(6): 481-489. |
93 | ALLEN T. Mechanics of flexible composite hull panels subjected to water impacts[D]. Auckland: The University of Auckland, 2013: 9-283. |
94 | CHUANG S L. Experiments on flat-bottom slamming[J]. Journal of Ship Research, 1966, 10(1): 10-17. |
95 | RICHARDS M K, KELLEY E A. Development of a water impact dynamic test facility and crash testing of a UH-1H aircraft onto a water surface[C]∥ American Helicopter Society 55th Annual Forum. Quebec: American Helicopter Society, 1999: 293528151. |
96 | ANGHILERI M, CASTELLETTI L M L, FRANCESCONI E, et al. Survey of numerical approaches to analyse the behavior of a composite skin panel during a water impact[J]. International Journal of Impact Engineering, 2014, 63: 43-51. |
97 | THUIS H, WIGGENRAAD J F M. A tensor-skin concept for crashworthiness of helicopters in case of water impact[C]∥ 50th Annual Forum Proceedings-American Helicopter Society. Washingdon D.C.: American Helicopter Society, 1994: 547. |
98 | WATANABE S. Resistance of impact on water surface, part I—cone[J]. Institute of Physical and Chemical Research, 1930, 12: 251-67. |
99 | WATANABE S. Resistance of impact on water surface, part II—cone (continued)[J]. Institute of Physical and Chemical Research, 1930, 14: 153-68. |
100 | CHUANG S L. Experiments on slamming of wedge-shaped bodies[J]. Journal of Ship Research, 1967, 11(3): 190-198. |
101 | ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]∥ Proceedings of the 21st Symposium on Naval Hydrodynamics. Washington D.C.: National Academies Press, 1996: 408-423. |
102 | AARSNES J. Drop test with ship sections-effect of roll angle: 603834.00.01[R]. Trondheim: Norwegian Marine Technology Research Institute, 1996. |
103 | 孙辉, 卢炽华, 何友声. 二维楔形体冲击入水时的流固耦合响应的实验研究[J]. 水动力学研究与进展, 2003, 18(1): 104-109. |
SUN H, LU C H, HE Y S. Experimental research on the fluid-structure interaction in water entry of 2D elastic wedge[J]. Journal of Hydrodynamics, 2003, 18(1): 104-109 (in Chinese). | |
104 | 莫立新, 王辉, 蒋彩霞, 等. 变刚度楔形体板架落体砰击试验研究[J]. 船舶力学, 2011, 15(4): 394-401. |
MO L X, WANG H, JIANG C X, et al. Study on dropping test of wedge grillages with various types of stiffeness[J]. Journal of Ship Mechanics, 2011, 15(4): 394-401 (in Chinese). | |
105 | DONG C R, SUN S L, SONG H X, et al. Numerical and experimental study on the impact between a free falling wedge and water[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 233-243. |
106 | Giavotto V, Caprile C, Airoldi A, et al. Research activity at politecnico di milano crash test laboratory[C]∥ Third International Krash Users’ seminar. Milano: Politecnico di Milano, 2001:1-12. |
107 | FRANCESCONI E E, ANGHILERI M. A numerical-experimental investigations on crash behaviour of skin panels during a water impact comparing ale and sph approaches[C]∥ 7th European LS-DYNA Conference. Baden-Baden: ANSYS Inc., 2009: H-I-04. |
108 | FRANCESCONI E, ANGHILERI M. Water impact drop tests of metallic and composite skin panels and numerical simulations using ale and sph approaches[C]∥ 65th Annual Forum Proceedings-American Helicopter Society. Curran: American Helicopter Society, 2009: 944-953. |
109 | MITCHELL R. Tank tests with seaplane models: Suggestions, based on experience, for the application of model results to full scale[J]. Aircraft Engineering and Aerospace Technology, 1930, 2(10): 255-259. |
110 | TRUSCOTT S. The NACA tank: a high-speed towing basin for testing models of seaplane floats: NACA-TR-470[R]. Washington, D.C.: NACA, 1934 |
111 | BATTERSON S A. Water landing investigation of a hydro-ski model at beam loadings of 18.9 and 4.4: NACA-RM-L51F27[R]. Washington D.C.: NACA, 1951. |
112 | FISHER L J, HOFFMAN E. A brief hydrodynamic investigation of a navy seaplane design equipped with a hydro-ski: NACA-RM-L53F04[R]. Washington, D.C.: NACA, 1953. |
113 | LU Y J, DEL BUONO A, XIAO T H, et al. On applicability of von Karman’s momentum theory in predicting the water entry load of V-shaped structures with varying initial velocity[J]. Ocean Engineering, 2022, 262: 112249. |
114 | COOMBES L P, PERRING W G A. The farnborough seaplane tank[J]. Aircraft Engineering and Aerospace Technology, 1934, 6(3): 63-66. |
115 | BERTRAM V. Practical ship hydrodynamics[M]. 2nd ed. Amsterdam: Elsevier, 2011: 1-333. |
116 | PARKINSON J. NACA model investigations of seaplanes in waves: NACA-TN-3419[R]. Washington, D.C.: NACA, 1955. |
117 | MILWITZKY B. A generalized theoretical and experimental investigation of the motions and hydrodynamic loads experienced by V-bottom seaplanes during step-landing impacts: NACA-TN-1516[R]. Washington, D.C.: NACA, 1948. |
118 | WEINIG F. Impact of a vee-type seaplane on water with reference to elasticity: No.810[R]. Washington D.C.: NACA, 1936. |
119 | THOMPSON F. Water pressure distribution on a twin-float seaplane: N-62-50328[R]. Washington D.C.: NAVY Building, 1930. |
120 | ITO K, SENDA Y, ITOH E, et al. 2D3 国産水上飛行機開発プロジェクト[C]∥ Program of 42nd Aircraft Symposium. 神奈川: 日本航空宇宙学会, 2004: 262262838. |
ITO K, SENDA Y, ITOH E, et al. The development of a new japanese seaplane[C]∥ Program of 42nd Aircraft Symposium. Kanagawa: The Japan Society for Aeronautical and Space Sciences, 2004: 262262838 (in Japanese). | |
121 | 李卢丹, 蒋红娜, 姜宏伟. 大型水陆两栖飞机入水压力测试技术研究[J]. 电子测量与仪器学报, 2022, 36(7): 206-212. |
LI L D, JIANG H N, JIANG H W. Research on water entry pressure measurementtechnology of large amphibious aircraft[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(7): 206-212 (in Chinese). | |
122 | 吕继航, 杨荣. 一种用于弹性水载荷测试的水上飞机机身模型: CN218463899U[P]. 2022-09-02. |
LV J H, YANG R. A seaplane fuselage model for elastic water load testing: CN218463899U[P]. 2022-09-02 (in Chinese). | |
123 | REMINGTON W. The Canadair CL-215 amphibious aircraft-Development and applications: AIAA-1989-1541[R]. Reston: AIAA, 1989. |
124 | COOMBES L P. The testing of seaplanes and flying boats[J]. The Journal of the Royal Aeronautical Society, 1930, 34: 190-209. |
125 | HAMILTON J, ALLEN J E. Seaplane research—the MAEE contribution[J]. The Aeronautical Journal, 2003, 107(1069): 125-148. |
126 | 吴彬, 王明振, 杨阳, 等. 水陆两栖飞机着水载荷试验研究[C]∥ 第十七届中国国际船艇展暨高性能船学术报告会. 上海:中国造船工程学会, 2012: C10-1-C10-5. |
WU B, WANG M Z, YANG Y, et al. Amphibious aircraft landing load test study[C]∥ The 17th China International Boat Show and High Performance Boat Academic Conference. Shanghai: The Chinese Society of Naval Architects and Marine Engineers, 2012: C10-1-C10-5 (in Chinese). | |
127 | 陈枫. 两栖飞机船体机身水气动设计及着水载荷减缓技术研究[D]. 南京: 南京航空航天大学, 2019. |
CHEN F. Hydroaerodynamic design of amphibious aircraft hull and fuselage and research on landing load mitigation technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
128 | 张培红, 周乃春, 邓有奇, 等. 雷诺数对飞机气动特性的影响研究[J]. 空气动力学学报, 2012, 30(6): 693-698. |
ZHANG P H, ZHOU N C, DENG Y Q, et al. The effects of Reynolds number on airplane aerodynamic characteristics[J]. Acta Aerodynamica Sinica, 2012, 30(6): 693-698 (in Chinese). | |
129 | THUIS H, VRIES H D, WIGGENRAAD J. Sub-floor skin panels for improved crashworthiness of helicopters in case of water impact[C]∥ 51th Annual Forum Proceedings-American Helicopter Society. Fort Worth: American Helicopter Society, 1995: 600-608. |
130 | SEDDON C M, MOATAMEDI M. Review of water entry with applications to aerospace structures[J]. International Journal of Impact Engineering, 2006, 32(7): 1045-1067. |
131 | MICHIELSEN A, WIGGENRAAD J, UBELS L C, et al. Design, test and analysis of tensor skin panels for improved crashworthiness in case of water impact[J]. 1998. |
132 | 王明振, 吕宏强, 曹楷, 等. 一种水陆两栖飞机典型截面的着水面载荷预测方法: CN114357878A[P]. 2022-04-15. |
WANG M Z, LV H Q, CAO K, et al. A method for predicting landing surface loads on typical sections of amphibious aircraft: CN114357878A[P]. 2022-04-15 (in Chinese). | |
133 | 胡亮文, 曾毅. 水陆两栖飞机着水静力试验载荷计算方法: CN110750890A[P]. 2020-02-04. |
HU L W, ZENG Y. Amphibious aircraft landing hydrostatic test load calculation method: CN110750890A[P]. 2020-02-04 (in Chinese). | |
134 | 田文朋,夏峰,宋鹏飞,等,水陆两栖飞机静力试验优化机翼变形的载荷配平 [J],航空学报,2020,41(11): 223956. |
TIAN W P, XIA F, SONG P F, et al. Load balancing for wind deformaton optimization in amphibious aircraft statictest[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 223956 (in Chinese). | |
135 | 张柁, 张园, 杨兆林, 等. 基于结构变形约束的水陆两栖飞机水载荷静力试验载荷优化配平技术[J]. 机床与液压, 2020, 48(11): 86-91. |
ZHANG T, ZHANG Y, YANG Z L, et al. Load optimization and balancing technology for static test of water load amphibious aircraft based on structural deformation constraint[J]. Machine Tool & Hydraulics, 2020, 48(11): 86-91 (in Chinese). | |
136 | 何月洲, 赵洪伟. 水陆两栖飞机静强度试验悬空支持技术研究及应用[J]. 工程与试验, 2018, 58(4): 98-101, 105. |
HE Y Z, ZHAO H W. Study on suspended support technology in static strength test of full-scale amphibian aircraft and its application[J]. Engineering & Test, 2018, 58(4): 98-101, 105 (in Chinese). | |
137 | 赵洪伟. 水陆两栖飞机水载荷工况试验液压控制技术应用研究[J]. 今日制造与升级, 2020(10): 96-98. |
ZHAO H W. Research on application of hydraulic control technology in water load test of amphibious aircraft[J]. Manufacture & Upgrading Today, 2020(10): 96-98 (in Chinese). | |
138 | 尚红星, 王海, 何月洲, 等. 水陆两栖飞机结构强度试验中的水载荷模拟方法[J]. 科学技术与工程, 2019, 19(14): 371-376. |
SHANG H X, WANG H, HE Y Z, et al. Simulation method of water load in structural strength test of amphibious aircraft[J]. Science Technology and Engineering, 2019, 19(14): 371-376 (in Chinese). | |
139 | 张柁, 张园, 何月洲, 等. 水陆两栖飞机船尾着水试验技术研究及应用[J]. 工程与试验, 2019, 59(4): 84-87. |
ZHANG T, ZHANG Y, HE Y Z, et al. Research and application of amphibious aircraft stern water test technique[J]. Engineering & Test, 2019, 59(4): 84-87 (in Chinese). | |
140 | 张柁, 何月洲, 王海. 水陆两栖飞机浮筒及其连接结构非对称筒首着水工况试验技术研究及应用[J]. 工程与试验, 2019, 59(3): 53-56, 75. |
ZHANG T, HE Y Z, WANG H. Amphibious aircraft pontoon and its connection structure symmetric cylinder head water test technical research and application[J]. Engineering & Test, 2019, 59(3): 53-56, 75 (in Chinese). | |
141 | 秦政琪, 李群芳, 刘福佳, 等. 通航水上飞机浮筒静强度试验装置及试验方法: CN114061930A[P]. 2022-02-18. |
QIN Z Q, LI Q F, LIU F J, et al. Static strength test device and test method for navigable seaplane floats: CN114061930A[P]. 2022-02-18 (in Chinese). | |
142 | CHINVORARAT S. Composite wing structure of light amphibious airplane design, optimization, and experimental testing[J]. Heliyon, 2021, 7(11): e08410. |
143 | VAN DYCK R. Seaplanes and the towing tank: AIAA-1989-1533[R]. Reston: AIAA, 1989. |
144 | OKADA S, SUMI Y. On the water impact and elastic response of a flat plate at small impact angles[J]. Journal of Marine Science and Technology, 2000, 5(1): 31-39. |
145 | SIEMANN M H, SCHWINN D B, SCHERER J, et al. Advances in numerical ditching simulation of flexible aircraft models[J]. International Journal of Crashworthiness, 2018, 23(2): 236-251. |
146 | KÁRMÁN T. The impact on seaplane floats during landing [J]. 1929. |
147 | WAGNER H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Journal of Applied Mathematics and Mechanics, 1932, 12(4): 193-215. |
148 | SEDOV L. The impact of a solid body floating on the surface of an incompressible fluid: Report 189[R]. Moscow: CAHI, 1934. |
149 | YU Y T. Virtual masses of rectangular plates and parallelepipeds in water[J]. Journal of Applied Physics, 1945, 16(11): 724-729. |
150 | SHIFFMAN M, SPENCER D C. The force of impact on a cone striking a water surface (vertical entry)[J]. Communications on Pure and Applied Mathematics, 1951, 4(4): 379-417. |
151 | MONAGHAN R. A review of the essentials of impact force theories for seaplanes and suggestions for approximate design formulae: No.2720 [R]. London: His Majesty’s Stationery Office, 1947. |
152 | DONG Z S, GAO X P, SUN W. The impact load of wing-In-ground-effect craft in waves and application of hydro-ski[M]∥Practical Design of Ships and Other Floating Structures. Amsterdam: Elsevier, 2001: 97-103. |
153 | BATTISTIN D, IAFRATI A. Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies[J]. Journal of Fluids and Structures, 2003, 17(5): 643-664. |
154 | JUDGE C, TROESCH A, PERLIN M. Initial water impact of a wedge at vertical and oblique angles[J]. Journal of Engineering Mathematics, 2004, 48(3): 279-303. |
155 | XU G D, DUAN W Y, WU G X. Numerical simulation of oblique water entry of an asymmetrical wedge[J]. Ocean Engineering, 2008, 35(16): 1597-1603. |
156 | 褚林塘, 吴彬, 王明振, 等. 地效飞机着水冲击载荷理论计算与试验[J]. 航空学报, 2016, 37(12): 3698-3705. |
CHU L T, WU B, WANG M Z, et al. Theoretical calculation and experiment on impact loads of landing of wing-in-ground aircraft on water surface[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3698-3705 (in Chinese). | |
157 | YU P Y, LI H, ONG M C. Hydroelastic analysis on water entry of a constant-velocity wedge with stiffened panels[J]. Marine Structures, 2019, 63: 215-238. |
158 | LU Y J, DEL BUONO A, XIAO T H, et al. Parametric study on the water impacting of a free-falling symmetric wedge based on the extended von Karman’s momentum theory[J]. Ocean Engineering, 2023, 271: 113773. |
159 | GREENHOW M, LIN W M. Nonlinear-free surface effects: Experiments and theory:83-19[R]: Cambridge: MIT, 1983. |
160 | ABRATE S. Hull slamming[J]. Applied Mechanics Reviews, 2011, 64(6): 060803. |
161 | MÜLLER M, WOIDT M, HAUPT M, et al. Challenges of fully-coupled high-fidelity ditching simulations[J]. Aerospace, 2019, 6(2): 10. |
162 | TAKASHI N, HUGHES T J R. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 95(1): 115-138. |
163 | CERQUAGLIA M L, THOMAS D, BOMAN R, et al. A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 348: 409-442. |
164 | MOUSAVIRAAD S M, WANG Z Y, STERN F. URANS studies of hydrodynamic performance and slamming loads on high-speed planing hulls in calm water and waves for deep and shallow conditions[J]. Applied Ocean Research, 2015, 51: 222-240. |
165 | de MARCO A, MANCINI S, MIRANDA S, et al. Experimental and numerical hydrodynamic analysis of a stepped planing hull[J]. Applied Ocean Research, 2017, 64: 135-154. |
166 | WANG H, ZHU R C, ZHA L, et al. Experimental and numerical investigation on the resistance characteristics of a high-speed planing catamaran in calm water[J]. Ocean Engineering, 2022, 258: 111837. |
167 | DONEA J, HUERTA A, PONTHOT J P, et al. Encyclopedia of computational mechanics[M]. 2nd ed. Blackwell: Wiley, 2004: 414-437. |
168 | NOH W F. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code: UCRL-7463[R]. Livermore: University of California, 1963. |
169 | FRANCK R M, LAZARUS R B. Mixed eulerian-lagrangian method[M]. New York: Academic Press, 1964: 3. |
170 | HIRT C W, AMSDEN A A, COOK J L. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of Computational Physics, 1974, 14(3): 227-253. |
171 | NAZEM M, SHENG D, CARTER J P, et al. Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(9): 1023-1050. |
172 | 何涛. 流固耦合新算法研究及其气动弹性应用[D]. 上海: 上海交通大学, 2013. |
HE T. Novel partitioned coupling algorithms for fluid-structure interaction with applications to aeroelasticity[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese). | |
173 | CAI Y N, LU J H, WANG S Q, et al. A Lagrangian point approximation-based immersed boundary–lattice boltzmann method for FSI problems involving deformable body[J]. International Journal of Computational Methods, 2022, 19(3): 2150070. |
174 | NG K C, ALEXIADIS A, CHEN H L, et al. Numerical computation of fluid-solid mixture flow using the SPH-VCPM-DEM method[J]. Journal of Fluids and Structures, 2021, 106: 103369. |
175 | HU P, XUE L P, MAO S L, et al. Material point method applied to fluid-structure interaction (FSI)/aeroelasticity problems: AIAA-2010-1464[R]. Reston: AIAA, 2010. |
176 | ANGHILERI M, CASTELLETTI L, FRANCESCONI E. Water impact: experimental tests and numerical simulations using meshless methods[C]∥ 6th European LS-DYNA Users’ Conference. Berlin : Springer, 2007 : 1.183-1.194. |
177 | SUN P N, LE TOUZÉ D, OGER G, et al. An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions[J]. Ocean Engineering, 2021, 221: 108552. |
178 | MAZHAR F, JAVED A, XING J T, et al. On the meshfree particle methods for fluid-structure interaction problems[J]. Engineering Analysis With Boundary Elements, 2021, 124: 14-40. |
179 | 何建东. 基于SPH的流固耦合数值模拟方法及其GPU加速技术研究[D]. 北京: 北京理工大学, 2018. |
HE J D. Numerical simulation of hydro-elastic problems based on GPU-accelerated SPH method[D]. Beijing: Beijing Institute of Technology, 2018 (in Chinese). | |
180 | SIEMANN M H, LANGRAND B. Coupled fluid-structure computational methods for aircraft ditching simulations: Comparison of ALE-FE and SPH-FE approaches[J]. Computers & Structures, 2017, 188: 95-108. |
181 | KIM J D, LI Y, LI X L. Simulation of parachute FSI using the front tracking method[J]. Journal of Fluids and Structures, 2013, 37: 100-119. |
182 | HE P, QIAO R. A full-Eulerian solid level set method for simulation of fluid-structure interactions[J]. Microfluidics and Nanofluidics, 2011, 11(5): 557-567. |
183 | PESKIN C S. Flow patterns around heart valves: A numerical method[J]. Journal of Computational Physics, 1972, 10(2): 252-271. |
184 | SHU C, LIU N, CHEW Y T. A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder[J]. Journal of Computational Physics, 2007, 226(2): 1607-1622. |
185 | ANTOCI C, GALLATI M, SIBILLA S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers & Structures, 2007, 85(11-14): 879-890. |
186 | RAFIEE A, THIAGARAJAN K P. An SPH projection method for simulating fluid-hypoelastic structure interaction[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(33-36): 2785-2795. |
187 | 胡奇, 王明振, 吴彬, 等. 网格因素对水陆两栖飞机着水性能计算结果的影响[J]. 船海工程, 2021, 50(4): 10-13. |
HU Q, WANG M Z, WU B, et al. Influence of grid factors on the calculation results of landing performance for amphibious aircraft[J]. Ship & Ocean Engineering, 2021, 50(4): 10-13 (in Chinese). | |
188 | WU G X, SUN H, HE Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion[J]. Journal of Fluids and Structures, 2004, 19(3): 277-289. |
189 | XIAO J, BATRA R C. Delamination in sandwich panels due to local water slamming loads[J]. Journal of Fluids and Structures, 2014, 48: 122-155. |
190 | CHAUDHRY A Z, SHI Y, PAN G. Recent developments on the water entry impact of wedges and projectiles[J]. Ships and Offshore Structures, 2022, 17(3): 695-714. |
191 | 孙华伟. 滑行面形状对滑行艇阻力与航态影响数值分析[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
SUN H W. Numerical analysis of planing-hull surface shape on resistance and sailing attitude[D]. Harbin: Harbin Engineering University, 2012 (in Chinese). | |
192 | GARLAND W R, MAKI K J. A numerical study of a two-dimensional stepped planing surface[J]. Journal of Ship Production and Design, 2012, 28(2): 60-72. |
193 | ABBAS D, ARMAN E, SIMONE M. Performance prediction of two-stepped planing hulls using morphing mesh approach[J]. Journal of Ship Production and Design, 2018, 34(3): 236-248. |
194 | 陈思宇, 孙建红, 孙智, 等. 地效飞行器双断阶机腹着水砰击过载分析[J]. 航空工程进展, 2022, 13(6): 134-143. |
CHEN S Y, SUN J H, SUN Z, et al. Analysis of water landing overload of the double-stepped wing-in-ground aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 134-143 (in Chinese). | |
195 | 李新颖, 王明振, 唐彬彬. 水陆两栖飞机高性能复合船型耐波性数值计算与水池试验[J]. 科学技术与工程, 2020, 20(5): 2099-2104. |
LI X Y, WANG M Z, TANG B B. Numerical calculation and tank test on seakeeping performance of high performance hybrid monohull of amphibious aircraft[J]. Science Technology and Engineering, 2020, 20(5): 2099-2104 (in Chinese). | |
196 | UTOMO A, GUNAWAN, YANUAR. Biomimetics design optimization and drag reduction analysis for Indonesia N219 seaplanes catamaran float[J]. Processes, 2021, 9(11): 2024. |
197 | HU Q, WU B, WANG M Z, et al. Numerical simulation of wave landing loads characteristics of twin-float seaplane[J]. IOP Conference Series: Materials Science and Engineering, 2019, 692(1): 012024. |
198 | SETH A, LIEM R P. Hydrofoil conceptual design and optimization framework for amphibious aircraft: AIAA-2019-3552[R]. Reston: AIAA, 2019. |
199 | 罗琳胤, 杨仕福, 吕继航. 水陆两栖飞机着水响应模型与数值分析[J]. 机械设计, 2013, 30(8): 86-89. |
LUO L Y, YANG S F, LV J H. Analysis and numeral simulation of water landing response model for amphibian[J]. Journal of Machine Design, 2013, 30(8): 86-89 (in Chinese). | |
200 | 姚小虎, 黄愉太, 欧智成, 等. 基于CEL算法的水陆两栖飞机水上降落动力特性分析[J]. 华南理工大学学报(自然科学版), 2015, 43(6): 110-115. |
YAO X H, HUANG Y T, OU Z C, et al. CEL algorithm-based analysis of dynamic characteristics of amphibious aircraft landing on water[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6): 110-115 (in Chinese). | |
201 | DUAN X P, SUN W P, CHEN C, et al. Numerical investigation of the porpoising motion of a seaplane planing on water with high speeds[J]. Aerospace Science and Technology, 2019, 84: 980-994. |
202 | 孙丰, 吴彬, 廉滋鼎, 等. 着水姿态对大型水陆两栖飞机着水性能的影响[J]. 船舶力学, 2019, 23(4): 397-404. |
SUN F, WU B, LIAN Z D, et al. Influence of pitch angle on water-entry performance of large-scale amphibian aircraft hull[J]. Journal of Ship Mechanics, 2019, 23(4): 397-404 (in Chinese). | |
203 | 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020, 46(4): 830-838. |
ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838 (in Chinese). | |
204 | WANG L X, YIN H P, YANG K, et al. Water takeoff performance calculation method for amphibious aircraft based on digital virtual flight[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3082-3091. |
205 | 吕继航, 曾毅, 杨荣. 大型水陆两栖飞机的动力学响应特性[J]. 航空制造技术, 2020, 63(20): 64-69. |
LÜ J H, ZENG Y, YANG R. Dynamic response characteristics of large amphibious aircraft[J]. Aeronautical Manufacturing Technology, 2020, 63(20): 64-69 (in Chinese). | |
206 | 卢昱锦, 肖天航, 邓双厚, 等. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(7): 124483. |
LU Y J, XIAO T H, DENG S H, et al. Effects of initial conditions on water landing performance of amphibious aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124483 (in Chinese). | |
207 | CHEN J C, XIAO T H, WANG M Z, et al. Numerical study of wave effect on aircraft water-landing performance[J]. Applied Sciences, 2022, 12(5): 2561. |
208 | 胡大勇, 杨嘉陵, 王赞平, 等. 某型飞机水上迫降数值化模型[J]. 北京航空航天大学学报, 2008, 34(12): 1369-1374, 1383. |
HU D Y, YANG J L, WANG Z P, et al. Numerical model for a commercial aircraft water landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(12): 1369-1374, 1383 (in Chinese). | |
209 | 胡海波, 孟妍, 杨昆. 某型水陆两栖飞机水上降落机身强度分析[J]. 应用科技, 2022, 49(4): 63-69. |
HU H B, MENG Y, YANG K. Fuselage strength analysis of amphibious aircraft for water landing[J]. Applied Science and Technology, 2022, 49(4): 63-69 (in Chinese). | |
210 | 中国民用航空局, 运输类旋翼航空器适航规定: CCAR-29 [S]. 北京: 中国民用航空局, 2017. |
Civil Aviation Administration of China. Airworthiness standards of transport category rotorcraft: CCAR-29 [S]. Beijing: Civil Aviation Administration of China, 2017 (in Chinese). | |
211 | Federal Aviation Administration. Certification of transport category rotorcraft: AC-29-2C [S]. Washington D.C.: Federal Aviation Administration, 2014. |
212 | HUGHES K, CAMPBELL J, VIGNJEVIC R. Application of the finite element method to predict the crashworthy response of a metallic helicopter under floor structure onto water[J]. International Journal of Impact Engineering, 2008, 35(5): 347-362. |
213 | SIEMANN M. Numerical and experimental investigation of the structural behavior during aircraft emergency landing on water[D]. Stuttgart: University of Stuttgart, 2016: 1-45. |
214 | SIEMANN M H, KOHLGRÜBER D, VOGGENREITER H. Numerical simulation of flexible aircraft structures under ditching loads[J]. CEAS Aeronautical Journal, 2017, 8(3): 505-521. |
215 | FISHER L J, HOFFMAN E L. Model ditching Investigation of the Douglas DC-4 and DC-6 Airplanes: RM-SL9K02A[R]. Washingdon D.C.: NACA, 1950. |
216 | THOMPSON W. Model ditching investigation of the Boeing 707 jet transport: NACA RM-SL55K08[R]. Washington, D.C.: NACA, 1955. |
217 | STEINER M F. Accelerations and bottom pressures measured on a B-24D airplane in a ditching test: NACA-WR-L-648[R]. Washington, D.C.: NACA, 1944. |
218 | FISHER L J, HOFFMAN E. Ditching investigations of dynamic models and effects of design parameters on ditching characteristics: NACA-TN-3946[R]. Washington, D.C.: NACA, 1957. |
219 | SZEBEHELY V G, BASIN E. Progress in theoretical and experimental studies of ship slamming[C]∥ Proceedings of the First Conference on Ships and Waves. Berkeley: University of California. 1955: 230-250. |
220 | SZEBEHELY V G. Hydrodynamic impact[J]. Applied Mechanics Reviews, 1959, 12(5): 297-300. |
221 | SHOJI H, MINEGISHI M, MIYAKI H, et al. Hydrodynamic impact estimation of transport fuselage structure with vertical drop water impact tests: AIAA-2008-1746[R]. Reston: AIAA, 2008. |
222 | BENSON H E. Water impact of the Apollo spacecraft[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1282-1284. |
223 | BAKER W E, WESTINE P S. Model tests for structural response of Apollo command module to water impact[J]. Journal of Spacecraft and Rockets, 1967, 4(2): 201-208. |
224 | MAY A. Review of water-entry theory and data[J]. Journal of Hydronautics, 1970, 4(4): 140-142. |
225 | STUBBS S M. Water landing characteristics of a model of a winged reentry vehicle: NASA-TN-D-6859[R]. Washington, D.C.: NASA, 1972. |
226 | WIERZBICKI T, YUE D K. Spacecraft crashworthiness-towards reconstruction of the challenger accident[J]. AMD (The American Society of Mechanical Engineers), 1986, 79: 31-46. |
227 | ALCEDO A M. Design and testing of float landing gear systems for helicopters[J]. Journal of the American Helicopter Society, 1980, 25(3): 3-9. |
228 | REILLY M. Lightweight emergency flotation system for the CH-46 helicopter: NADC-79169-60[R]. Warminster: Naval Air Development Center, 1981. |
229 | MULLER M, GREENWOOD R, RICHARDS M K, et al. Survey and analysis of rotorcraft flotation systems[R]. Harbor Township: Galaxy Scientific Corp Egg, 1996. |
230 | SIMITSES G J, STARNES J H J, REZAEEPAZHAND J. Structural similitude and scaling laws for plates and shells: A review[M]∥DURBAN D, GIVOLI D, SIMMONDS J G, editors. Advances in the Mechanics of Plates and Shells. Dordrecht: Springer Netherlands, 2001: 295-310. |
231 | Civil Aviation Authority. Review of Helicopter Offshore Safety and Survival: CAP-641[R]. London: Civil Aviation Authority, 1995. |
232 | CLIFFORD W. Helicopter crashworthiness: CAA paper 96005[R]. London: Civil Aviation Authority, 1996. |
233 | DELETOMBE E, DELSART D, KOHLGRÜBER D, et al. Improvement of numerical methods for crash analysis in future composite aircraft design[J]. Aerospace science and technology, 2000, 4(3): 189-199. |
234 | MCCARTHY M A, HARTE C G, WIGGENRAAD J F M, et al. Finite element modelling of crash response of composite aerospace sub-floor structures[J]. Computational Mechanics, 2000, 26(3): 250-258. |
235 | PENTECÔTE N, VIGLIOTTI A. Crashworthiness of helicopters on water: Test and simulation of a full-scale WG30 impacting on water[J]. International Journal of Crashworthiness, 2003, 8(6): 559-572. |
236 | BOUSCASSE B, OHANA J, ZARIM M, et al. Report on test data on helicopter ditching: D5.2[R]. Belgium: SARAH, 2019. |
237 | 汪正中, 陈立霞, 索谦, 等. 直升机着水载荷试验研究[J]. 南京航空航天大学学报, 2017, 49(2): 258-263. |
WANG Z Z, CHEN L X, SUO Q, et al. Test research on helicopter ditching load[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(2): 258-263 (in Chinese). | |
238 | 吴世德, 季洪兴. C-5A飞机的水上迫降动力模型试验[J]. 民用飞机设计与研究, 1991(2): 52-57. |
WU S D, JI H. Dynamic model test of water crash landing for C-5A[J]. Civil Aircraft Design & Research, 1991(2): 52-57 (in Chinese). | |
239 | 张韬, 李书, 代恒超. 大型客机水上迫降尾部吸力效应分析[J]. 中国科学: 技术科学, 2012, 42(12): 1407-1415. |
ZHANG T, LI S, DAI H C. Analysis of tail suction effect of large passenger plane forced landing on water[J]. Scientia Sinica (Technologica), 2012, 42(12): 1407-1415 (in Chinese). | |
240 | 徐文岷, 李凯. 民用飞机弹性结构水上迫降试验载荷研究[J]. 航空学报, 2014, 35(4): 1012-1018. |
XU W M, LI K. Research on civil aircraft elastic structure ditching test load[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(4): 1012-1018 (in Chinese). | |
241 | 陈英华, 吴希明, 袁李斌. 直升机典型元组件垂直入水试验研究[J]. 南京航空航天大学学报, 2018, 50(2): 186-192. |
CHEN Y H, WU X M, YUAN L B. Experimental research on vertical water entry of helicopter typical components[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 186-192 (in Chinese). | |
242 | SCHNITZER E, HATHAWAY M E. Estimation of hydrodynamic impact loads and pressure distributions on bodies approximating elliptical cylinders with special reference to water landings of helicopters: NACA-TN-2889[R]. Washington, D.C.: NACA, 1953. |
243 | COINTE R. Two-dimensional water-solid impact[J]. Journal of Offshore Mechanics and Arctic Engineering, 1989, 111(2): 109-114. |
244 | MEI X M, LIU Y M, YUE D K P. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1): 1-15. |
245 | KOROBKIN A A, KHABAKHPASHEVA T I. Regular wave impact onto an elastic plate[J]. Journal of Engineering Mathematics, 2006, 55(1): 127-150. |
246 | 刘沛清, 屈秋林, 郭保东, 等. 数值计算技术在飞机水上迫降中的应用[J]. 力学与实践, 2014, 36(3): 278-284. |
LIU P Q, QU Q L, GUO B D, et al. Application of computational fluid dynamics in the planned ditching of a transport airplane[J]. Mechanics in Engineering, 2014, 36(3): 278-284 (in Chinese). | |
247 | 童明波, 陈吉昌, 李乐, 等. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报, 2021, 42(5): 524530. |
TONG M B, CHEN J C, LI L, et al. State of the art and perspectives of numerical simulation of aircraft structural integrity from hydrodynamics-Part Ⅰ: Ditching and floating[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524530 (in Chinese). | |
248 | 罗文莉, 陈书涌, 陈保兴. 民用飞机水上迫降数值仿真方法研究进展[J]. 航空工程进展, 2022, 13(5): 14-27. |
LUO W L, CHEN S Y, CHEN B X. Research progress of numerical simulation methods for civil aircraft ditching[J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 14-27 (in Chinese). | |
249 | KROSS D, KIEFLING L, MURPHY N, et al. Space Shuttle solid rocket booster initial water impact loads and dynamics-Analysis, tests, and flight experience: AIAA-1983-0956[R] Reston: AIAA, 1983. |
250 | GHAFFARI F. Analytical method for the ditching analysis of an airborne vehicle[J]. Journal of Aircraft, 1990, 27(4): 312-319. |
251 | WITTLIN G, RAPAPORT M B. Naval rotorcraft water impact crash simulation using program KRASH[C]∥ 49th Annual Forum Proceedings-American Helicopter Society. St. Louis: American Helicopter Society, 1993: 737-737. |
252 | CLIMENT H, BENITEZ L, ROSICH F, et al. Aircraft ditching numerical simulation[C]∥ 25th International Congress of the Aeronautical Sciences. Bonn: ICAS, 2006: 1-16. |
253 | CAMPBELL J. Prediction of aircraft structural response during ditching: An overview of the SMAES project[C]∥ 11th World Congress on Computational Mechanics. Barcelona: International Center for Numerical Methods in Engineering, 2014: a2048. |
254 | WOODGATE M A, BARAKOS G N, SCRASE N, et al. Simulation of helicopter ditching using smoothed particle hydrodynamics[J]. Aerospace Science and Technology, 2019, 85: 277-292. |
255 | CLIMENT H, ARÉVALO F, VIANA J T, et al. Ditching loads numerical and experimental alternatives[C]∥ International Forum on Aerolasticity and Structural Dynamics. 2019: 1514-1532. |
256 | HAMMANI I. Improvement of the SPH method for multiphase flows application to the emergency water landing of aircrafts: Application to the emergency water landing of aircrafts[D]. Nantes: École centrale de Nantes, 2020:5-105. |
257 | 朱晓艳. 客机水上迫降强度数值分析[D]. 武汉: 武汉理工大学, 2012. |
ZHU X Y. Numerical analysis on strength of airliner ditching[D]. Wuhan: Wuhan University of Technology, 2012 (in Chinese). | |
258 | QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5): 1550-1558. |
259 | ZHENG Y L, QU Q L, LIU P Q, et al. Numerical analysis of the porpoising motion of a blended wing body aircraft during ditching[J]. Aerospace Science and Technology, 2021, 119: 107131. |
260 | 高飞. 典型民机机身段垂直入水冲击数值模拟[D]. 天津: 中国民航大学, 2021. |
GAO F. Numerical simulation of vertical water impact of the fuselage section of typical civil aircraft[D]. Tianjin: Civil Aviation University of China, 2021 (in Chinese). | |
261 | YANG L, WEI Y J, WANG C, et al. Viscoelasticity dependence on hydrodynamic responses during water entry[J]. Ocean Engineering, 2023, 272: 113890. |
[1] | 代雨柔, 李健, 薛晓鹏, 荣伟. 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024, 45(7): 128811-128811. |
[2] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[3] | 蔡志勇, 石含玥, 赵红军, 李天琦, 王希宇, 周尧明. 水陆两栖飞机灭火飞行仿真系统构建与仿真[J]. 航空学报, 2023, 44(6): 227036-227036. |
[4] | 包文龙, 贾贺, 薛晓鹏, 黄雪姣, 高树义, 荣伟, 王奇, 吴壮志. 开“窗”结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936-226936. |
[5] | 刘畅, 张耘隆, 闫指江, 赵磊, 季辰. 锤头体火箭弹性模型脉动压力风洞试验[J]. 航空学报, 2023, 44(23): 128384-128384. |
[6] | 罗剑桥, 解春雷, 金泽华, 孟军辉. 跨介质飞行器近水面滑跳流固耦合仿真及可滑跳区域研究[J]. 航空学报, 2023, 44(21): 528632-528632. |
[7] | 李秋琳, 周莉, 孙鹏, 史经纬, 王占学. 出口宽高比对S弯喷管流固耦合特性影响[J]. 航空学报, 2023, 44(14): 628204-628204. |
[8] | 汪博, 高培鑫, 马辉, 孙伟, 林君哲, 李晖, 韩清凯, 刘中华. 航空发动机管路系统动力学特性综述[J]. 航空学报, 2022, 43(5): 25332-025332. |
[9] | 卢昱锦, 肖天航, 邓双厚, 支豪林, 朱震浩, 陆召严. 着水初始条件对水陆两栖飞机着水性能的影响[J]. 航空学报, 2021, 42(7): 124483-124483. |
[10] | 童明波, 陈吉昌, 李乐, 肖天航, 古彪, 董登科, 汪正中. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报, 2021, 42(5): 524530-524530. |
[11] | 赵立杰, 田孟伟, 李景奎, 王明阳, 刘达. 水上电动飞机浮筒设计及起飞滑行[J]. 航空学报, 2021, 42(3): 624590-624590. |
[12] | 田文朋, 夏峰, 宋鹏飞, 张柁, 杨鹏飞. 水陆两栖飞机静力试验优化机翼变形的载荷配平[J]. 航空学报, 2020, 41(11): 223956-223956. |
[13] | 赵欢, 焦忠泽, 孙丹, 刘永泉, 战鹏, 信琦. 多级刷式密封级间压降分配影响因素数值与实验研究[J]. 航空学报, 2020, 41(10): 123544-123544. |
[14] | 胡文刚, 林长亮, 王刚, 门坤发. 多欧拉域耦合法在平尾鸟撞中的应用[J]. 航空学报, 2020, 41(1): 222860-222860. |
[15] | 邱滋华, 徐敏, 张斌, 梁春雷. 适用于涡激振荡问题研究的并行高精度方法[J]. 航空学报, 2019, 40(3): 122483-122483. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学