[1] Boeing. Statistical summary of commercial jet airplane accidents[R]. Washington,D.C.:Aviation Safety,Boeing Commercial Airplanes, 2015: 24. [2] CAO Y H, WU Z L, SU Y, et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences, 2015, 74: 62-80. [3] MILLER R, RIBBENS W. Detection of the loss of elevator effectiveness due to aircraft icing[C]//37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999. [4] WEI Y, XU H J, XUE Y,et al.Quantitative assessment and visulaization of flight risk induced by coupled multi-facor under icing conditions[J]. Chinese Journal of Aeronautics, 2020,173(8):52-67. [5] BRAGG M, HUTCHISON T, MERRET J. Effect of ice accretion on aircraft flight dynamics[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000. [6] LAMPTON A, VALASEK J. Prediction of icing effects on the coupled dynamic response of light airplanes[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3): 656-673. [7] GUO L L, ZHU M H, NIE B W, et al. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system[J]. Chinese Journal of Aeronautics, 2017, 30(2): 602-610. [8] MURRI D G, NGUYE L T, GRAFTON S B. Wind tunnel free-flight investigation of a model of a forward swept-wing fighter configuration: NASA TP-2230[R]. Washington, D.C.: NASA, 1984. [9] SALAS M D. Digital flight: the last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2-3): 479-505. [10] MORTON S, MCDANIEL D, SEARS D, et al. Rigid, maneuvering, and aeroelastic results for kestrel-A CREATE simulation tool[C]//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. [11] DEAN J P, CLIFTON J D, BODKIN D J, et al. High resolution CFD simulations of maneuvering aircraft using the CREATE/AV-Kestrel solver[C]//AIAA Aerospace Sciences Meeting Including the New Horizons Forum & Aerospace Exposition. Reston: AIAA, 2011. [12] ALLAN M, BADCOCK K, RICHARDS B. CFD based simulation of longitudinal flight mechanics with control[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005. [13] 杨小亮. 飞行器多自由度耦合摇滚运动数值模拟研究[D]. 长沙: 国防科学技术大学, 2012. YANG X L. Numerical investigation of aircraft rock in multiple degrees of freedom[D]. Changsha: National University of Defense Technology, 2012 (in Chinese). [14] 黄宇, 阎超, 席柯, 等. 基于数值虚拟飞行技术的飞行器动态特性分析[J]. 航空学报, 2016, 37(8): 2525-2538. HUANG Y, YAN C, XI K, et al. Analysis of flying vehicle’s dynamic characteristics based on numerical virtual flight technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2525-2538 (in Chinese). [15] 杨云军, 崔尔杰, 周伟江. 细长三角翼滚转/侧滑耦合运动的数值研究[J]. 航空学报, 2007, 28(1): 14-19. YANG Y J, CUI E J, ZHOU W J. Numerical research on roll and sideslip coupling motions about a slender delta-wing[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 14-19 (in Chinese). [16] 张来平, 马戎, 常兴华, 等. 虚拟飞行中气动、运动和控制耦合的数值模拟技术[J]. 力学进展, 2014, 44(1):376-417. ZHANG L P, MA R, CHANG X H, et al. Review of aerodynamics/kinematics/flight-control coupling methods in virtual flight simulations[J]. Advances in Mechanics, 2014, 44(1):376-417(in Chinese). [17] 马戎. 基于动态混合网格的气动/运动耦合一体化计算方法研究[D]. 绵阳: 中国空气动力研究与发展中心, 2015. MA R. Numerical methods for aerodynamic/kinematic coupling problems based on dynamic hybrid grids[D]. Mianyang: China Aerodynamics Research and Development Center, 2015 (in Chinese). [18] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. [19] Van Leer B. Towards the ultimate conservation difference scheme I: The quest of monotonicity[J]. Lecture Notes in Physics, 1978, 18:163-168. [20] VAN LEER B. Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method[J]. Journal of Computational Physics, 1979, 32(1): 101-136. [21] YOON S, JAMESON A. An LU-SSOR scheme for the Euler and Navier-Stokes equations[C]//25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987. [22] SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. [23] 李立. 机动飞行数值模拟关键技术及初步验证[J]. 飞行力学, 2017, 35(1): 89-92. LI L. Key technologies and preliminary validation for numerical simulation of maneuver flight[J]. Flight Dynamics, 2017, 35(1): 89-92 (in Chinese). [24] LANDON R H. NACA0012 oscillatory and transient pitching:AGARD Report 702[R]. Washington, D.C.:AGARD, 1982. [25] BATINA J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal, 1990, 28(8): 1381-1388. [26] ADDY H E. Ice accretions and icing effects for modern airfoils: NASA/TP-2000-210031[R]. Washington, D.C.: NASA, 2000. [27] ANSYS. ANSYS ICEM CFD user manual[S]. Canonsbury:ANSYS Inc, 2012. [28] 魏扬, 李杰, 李明, 等. 结冰条件下大型飞机翼面分离流场结构及空气动力学特性研究[J]. 空军工程大学学报(自然科学版), 2020, 21(5): 9-16, 22. WEI Y, LI J, LI M, et al. Research on the airflow separation structure and aerodynamic characteristics of large aircraft under condition of ice formation on wings[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(5): 9-16, 22 (in Chinese). |