杨文青1,2(), 郭越洋1, 董渊博1, 薛栋1,2, 宣建林1,2
收稿日期:
2024-01-02
修回日期:
2024-01-24
接受日期:
2024-03-18
出版日期:
2024-09-15
发布日期:
2024-03-19
通讯作者:
杨文青
E-mail:yangwenqing@nwpu.edu.cn
基金资助:
Wenqing YANG1,2(), Yueyang GUO1, Yuanbo DONG1, Dong XUE1,2, Jianlin XUAN1,2
Received:
2024-01-02
Revised:
2024-01-24
Accepted:
2024-03-18
Online:
2024-09-15
Published:
2024-03-19
Contact:
Wenqing YANG
E-mail:yangwenqing@nwpu.edu.cn
Supported by:
摘要:
自然界的昆虫和鸟类具有卓越的飞行能力,能够通过扑动翅膀精妙地控制飞行时的姿态和位置。仿生扑翼飞行器是一种极具高性能潜力的无人机,其独特的仿生外形和飞行特性使其在低雷诺数环境下,兼具高机动性和高气动效率。仿生扑翼飞行器通常采用轻质柔性结构机翼,在周期性动态扑动时,流固耦合(FSI)问题是其面临的一个突出研究难点。本文对柔性扑翼的流固耦合研究现状进行了综述,介绍了柔性扑翼流固耦合的常用方法和数值模拟分析所涉及的重要无量纲参数,分析了国内外研究取得的最新进展,分享了计算分析所使用的工具,提出了目前研究中仍存在的问题与可发展的方向,并对未来仿生柔性扑翼无人机流固耦合研究进行了展望。
中图分类号:
杨文青, 郭越洋, 董渊博, 薛栋, 宣建林. 仿生柔性扑翼无人机流固耦合研究进展[J]. 航空学报, 2024, 45(17): 530069.
Wenqing YANG, Yueyang GUO, Yuanbo DONG, Dong XUE, Jianlin XUAN. Research progress on fluid structure interaction of bionic flexible flapping wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530069.
1 | SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios[J]. Journal of Fluids and Structures, 2018, 81: 69-96. |
2 | SHAHZAD A, TIAN F B, YOUNG J, et al. Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios[J]. Physics of Fluids, 2018, 30(9): 091902. |
3 | PINES D J, BOHORQUEZ F. Challenges facing future micro-air-vehicle development[J]. Journal of Aircraft, 2006, 43(2): 290-305. |
4 | CHEN L, ZHANG Y L, ZHOU C, et al. Aerodynamic mechanisms in bio-inspired micro air vehicles: A review in the light of novel compound layouts[J]. IET Cyber-Systems and Robotics, 2019, 1(1): 2-12. |
5 | PRAPAMONTHON P, YIN B, YANG G W, et al. Recent progress in flexibility effects on wing aerodynamics and acoustics[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(2): 208-244. |
6 | KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]∥Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
7 | MARTIN G. eMotion butterflies[EB/OL]. (2018-11-14) [2023-12-14]. . |
8 | 吕扬. 西工大“云鸮”无人机创吉尼斯世界纪录[N]. 陕西日报, 2022-12-19(6). |
LYU Y. Northwestern Polytechnical University’s ‘Yun-xiao’ flapping-wing drone sets Guinness World Record [N]. Shaanxi Daily, 2022-12-19(6) (in Chinese). | |
9 | 叶正寅, 王刚, 张伟伟. 流固耦合力学基础及其应用[M]. 2版. 哈尔滨: 哈尔滨工业大学出版社, 2016. |
YE Z Y, WANG G, ZHANG W W. Fundamentals of fluid-structure coupling and its application[M]. 2nd ed. Harbin: Harbin Institute of Technology Press, 2016 (in Chinese). | |
10 | HO T T T, LEE H, KWON Y. Analysis of intrinsic variability in phase-change memory switching originating from stochastic nucleation using fully coupled electrothermal and phase-field models[J]. ACS Applied Electronic Materials, 2023, 5(1): 281-290. |
11 | ZHAN C, ZHU L Y, ZHANG Y X, et al. A fully coupled model of multi-chip press-pack IGBT for thermo-mechanical stress distribution prediction[J]. IEEE Transactions on Industry Applications, 2022, 58(3): 3852-3862. |
12 | HONG G, KANEKO S, MITSUME N, et al. Robust fluid-structure interaction analysis for parametric study of flapping motion[J]. Finite Elements in Analysis and Design, 2021, 183-184: 103494. |
13 | HAIDER N, SHAHZAD A, QADRI M N M, et al. Aerodynamic analysis of hummingbird-like hovering flight[J]. Bioinspiration & Biomimetics, 2021, 16(6): 066018. |
14 | STEIN K, TEZDUYAR T, BENNEY R. Mesh moving techniques for fluid-structure interactions with large displacements[J]. Journal of Applied Mechanics, 2003, 70(1): 58-63. |
15 | NAKATA T, LIU H. A fluid-structure interaction model of insect flight with flexible wings[J]. Journal of Computational Physics, 2012, 231(4): 1822-1847. |
16 | NAKATA T, LIU H. Aerodynamic performance of a hovering hawkmoth with flexible wings: A computational approach[J]. Proceedings Biological Sciences, 2012, 279(1729): 722-731. |
17 | WICK T. Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity[J]. Computational Mechanics, 2014, 53(1): 29-43. |
18 | GRIFFITH B E, PATANKAR N A. Immersed methods for fluid-structure interaction[J]. Annual Review of Fluid Mechanics, 2020, 52: 421-448. |
19 | MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. |
20 | PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479-517. |
21 | HUANG W X, TIAN F B. Recent trends and progress in the immersed boundary method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(23-24): 7617-7636. |
22 | ZENG Y H, WANG Y, YANG D G, et al. Immersed boundary methods for simulations of biological flows in swimming and flying bio-locomotion: A review[J]. Applied Sciences, 2023, 13(7): 4208. |
23 | XU L C, TIAN F B, YOUNG J, et al. A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid-structure interactions at moderate and high Reynolds numbers[J]. Journal of Computational Physics, 2018, 375: 22-56. |
24 | HU Z, DENG X Y. Aerodynamic interaction between forewing and hindwing of a hovering dragonfly[J]. Acta Mechanica Sinica, 2014, 30(6): 787-799. |
25 | WANG L, TIAN F B, LIU H. Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere[J]. Physics of Fluids, 2022, 34(4): 041903. |
26 | BOMPHREY R J, NAKATA T, PHILLIPS N, et al. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight[J]. Nature, 2017, 544: 92-95. |
27 | LE T Q, TRUONG T V, PARK S H, et al. Improvement of the aerodynamic performance by wing flexibility and elytra: Hind wing interaction of a beetle during forward flight[J]. Journal of the Royal Society, Interface, 2013, 10(85): 20130312. |
28 | VAN TRUONG T, LE T Q, BYUN D, et al. Flexible wing kinematics of a free-flying beetle (rhinoceros beetle trypoxylus dichotomus)[J]. Journal of Bionic Engineering, 2012, 9(2): 177-184. |
29 | MENZER A, REN Y, GUO J C, et al. Wing kinematics and unsteady aerodynamics of a hummingbird pure yawing maneuver[J]. Biomimetics, 2022, 7(3): 115. |
30 | KOEHLER C, LIANG Z X, GASTON Z, et al. 3D reconstruction and analysis of wing deformation in free-flying dragonflies[J]. The Journal of Experimental Biology, 2012, 215(Pt 17): 3018-3027. |
31 | ANDERSON JR J D. Fundamentals of aerodynamics [M]. New York: Tata McGraw-Hill Education, 2010. |
32 | SHYY W, AONO H, KANG C K, et al. An introduction to flapping wing aerodynamics[M]. Cambridge: Cambridge University Press, 2013. |
33 | SHYY W, AONO H, CHIMAKURTHI S K, et al. Recent progress in flapping wing aerodynamics and aeroelasticity[J]. Progress in Aerospace Sciences, 2010, 46(7): 284-327. |
34 | HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics, 2013, 8(4): 046008. |
35 | YIN B, LUO H X. Effect of wing inertia on hovering performance of flexible flapping wings[J]. Physics of Fluids, 2010, 22(11): 111902-111902-10. |
36 | COMBES S A, DANIEL T L. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta[J]. Journal of Experimental Biology, 2003, 206(17): 2999-3006. |
37 | HEATHCOTE S, GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal, 2007, 45(5): 1066-1079. |
38 | VANELLA M, FITZGERALD T, PREIDIKMAN S, et al. Influence of flexibility on the aerodynamic performance of a hovering wing[J]. The Journal of Experimental Biology, 2009, 212(Pt 1): 95-105. |
39 | OLIVIER M, DUMAS G. A parametric investigation of the propulsion of 2D chordwise-flexible flapping wings at low Reynolds number using numerical simulations[J]. Journal of Fluids and Structures, 2016, 63: 210-237. |
40 | ISHIHARA D. Role of fluid-structure interaction in generating the characteristic tip path of a flapping flexible wing[J]. Physical Review E, 2018, 98(3): 032411. |
41 | ISHIHARA D. Computational approach for the fluid-structure interaction design of insect-inspired micro flapping wings[J]. Fluids, 2022, 7(1): 26. |
42 | TAHA H E, KIANI M, HEDRICK T L, et al. Vibrational control: A hidden stabilization mechanism in insect flight[J]. Science Robotics, 2020, 5(46): eabb1502. |
43 | KARÁSEK M. Good vibrations for flapping-wing flyers[J]. Science Robotics, 2020, 5(46): eabe4544. |
44 | SANE S P, DIEUDONNÉ A, WILLIS M A, et al. Antennal mechanosensors mediate flight control in moths[J]. Science, 2007, 315(5813): 863-866. |
45 | MASOUD H, ALEXEEV A. Resonance of flexible flapping wings at low Reynolds number[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(5 Pt 2): 056304. |
46 | DUDLEY R. The evolutionary physiology of animal flight: Paleobiological and present perspectives[J]. Annual Review of Physiology, 2000, 62: 135-155. |
47 | HA N S, TRUONG Q T, GOO N S, et al. Relationship between wingbeat frequency and resonant frequency of the wing in insects[J]. Bioinspiration & Biomimetics, 2013, 8(4): 046008. |
48 | OZAKI T, HAMAGUCHI K. Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 4217-4224. |
49 | THIRIA B, GODOY-DIANA R. How wing compliance drives the efficiency of self-propelled flapping flyers[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1 Pt 2): 015303. |
50 | RAMANANARIVO S, GODOY-DIANA R, THIRIA B. Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 5964-5969. |
51 | ZHANG J, LIU N S, LU X Y. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics, 2010, 659: 43-68. |
52 | SPAGNOLIE S E, MORET L, SHELLEY M J, et al. Surprising behaviors in flapping locomotion with passive pitching[J]. Physics of Fluids, 2010, 22(4): 41903-41903-20 . |
53 | CHEN J S, CHEN J Y, CHOU Y F. On the natural frequencies and mode shapes of dragonfly wings[J]. Journal of Sound Vibration, 2008, 313(3-5): 643-654. |
54 | GUO Y Y, YANG W Q, DONG Y B, et al. Numerical investigation of an insect-scale flexible wing with a small amplitude flapping kinematics[J]. Physics of Fluids, 2022, 34(8): 081903. |
55 | GUO Y Y, YANG W Q, DONG Y B, et al. Resonance mechanism of flapping wing based on fluid structure interaction simulation[J]. Chinese Journal of Aeronautics, 2024, 37(5): 243-262. |
56 | CHO H, GONG D, LEE N, et al. Combined co-rotational beam/shell elements for fluid-structure interaction analysis of insect-like flapping wing[J]. Nonlinear Dynamics, 2019, 97(1): 203-224. |
57 | TAY W B. Effect of different types of wing-wing interactions in flapping MAVs[J]. Journal of Bionic Engineering, 2017, 14(1): 60-74. |
58 | 杨文青, 宋笔锋, 宋文萍, 等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3): 1-10. |
YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 1-10 (in Chinese). | |
59 | TAY W B, DE BAAR J H S, PERCIN M, et al. Numerical simulation of a flapping micro aerial vehicle through wing deformation capture[J]. AIAA Journal, 2018, 56(8): 3257-3270. |
60 | PHAN H V, AURECIANUS S, KANG T, et al. KUBeetle-S: An insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism[J]. International Journal of Micro Air Vehicles, 2019, 11: 175682931986137. |
61 | PHAN H V, KANG T, PARK H C. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control[J]. Bioinspiration & Biomimetics, 2017, 12(3): 036006. |
62 | LEE J, YOON S H, KIM C. Experimental surrogate-based design optimization of wing geometry and structure for flapping wing micro air vehicles [J]. Aerospace Science and Technology, 2022, 123: 107451. |
63 | YOON S H, CHO H, LEE J, et al. Effects of camber angle on aerodynamic performance of flapping-wing micro air vehicle[J]. Journal of Fluids and Structures, 2020, 97: 103101. |
64 | 谢辉, 宋文萍, 宋笔锋. 基于CFD方法对微型扑翼翼型设计的研究[J]. 空气动力学学报, 2009, 27(2): 227-233. |
XIE H, SONG W P, SONG B F. Airfoil design of a micro-flapping wing based on CFD[J]. Acta Aerodynamica Sinica, 2009, 27(2): 227-233 (in Chinese). | |
65 | YANG W Q, SONG B F, WANG L G, et al. Dynamic fluid-structure coupling method of flexible flapping wing for MAV[J]. Journal of Aerospace Engineering, 2015, 28(6): 04015006. |
66 | 陈利丽, 宋笔锋, 宋文萍, 等. 基于结构动力学的平板扑翼气动弹性方法研究[J]. 空气动力学学报, 2013, 31(2): 175-180. |
CHEN L L, SONG B F, SONG W P, et al. Dynamic fluid-structure coupling research for micro flapping wing[J]. Acta Aerodynamica Sinica, 2013, 31(2): 175-180 (in Chinese). | |
67 | 薛栋. 结构参数和机体运动对扑翼性能的影响研究[D]. 西安: 西北工业大学, 2018. |
XUE D. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese). | |
68 | 杨小武. 基于实测变形的扑动翼气动力与惯性力计算及解耦方法研究 [D]. 西安: 西北工业大学, 2022. |
YANG X. Calculation and decoupling of aerodynamic force and inertial force of flapping wing based on measured deformation [D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
69 | YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63-76. |
70 | 朱志超. 面向高原环境的大型仿生扑动翼的设计方法研究 [D]. 西安: 西北工业大学, 2023. |
ZHU Z. A study on the design method of large bionic flapping wing for plateau environment [D]. Xi’an: Northwestern Polytechnical University, 2023 (in Chinese). | |
71 | CHOI J S, PARK G J. Multidisciplinary design optimization of the flapping wing system for forward flight[J]. International Journal of Micro Air Vehicles, 2017, 9(2): 93-110. |
72 | YANG L-J, FENG A-L, LEE H-C, et al. The three-dimensional flow simulation of a flapping wing [J]. Journal of Marine Science and Technology, 2018, 26(3): 2. |
73 | FAIRUZ Z M, ABDULLAH M Z, ZUBAIR M, et al. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach[J]. Journal of Aerospace Engineering, 2016, 29(4): 04016006. |
74 | CHIMAKURTHI S K, REUSS S, TOOLEY M, et al. ANSYS workbench system coupling: A state-of-the-art computational framework for analyzing multiphysics problems[J]. Engineering with Computers, 2018, 34(2): 385-411. |
75 | HEATHCOTE S, WANG Z J, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[C]∥36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006. |
76 | AONO H, CHIMAKURTHI S K, WU P, et al. A computational and experimental studies of flexible wing aerodynamics[C]∥Proceedings of the 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010. |
77 | DAI H, LUO H X, DOYLE J F. Dynamic pitching of an elastic rectangular wing in hovering motion[J]. Journal of Fluid Mechanics, 2012, 693: 473-499. |
78 | WANG L, TIAN F B. Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight[J]. Journal of Fluids and Structures, 2020, 99: 103165. |
79 | KAWAKAMI K, KANEKO S, HONG G, et al. Fluid-structure interaction analysis of flexible flapping wing in the Martian environment[J]. Acta Astronautica, 2022, 193: 138-151. |
80 | NOH W F. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code[R]. Livermore: Lawrence Radiation Lab., University of California, 1963. |
81 | HAMAMOTO M, OHTA Y, HARA K, et al. A fundamental study of wing actuation for a 6-in-wingspan flapping microaerial vehicle[J]. IEEE Transactions on Robotics, 2010, 26(2): 244-255. |
[1] | 代雨柔, 李健, 薛晓鹏, 荣伟. 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024, 45(7): 128811-128811. |
[2] | 张迁, 颜冠伟, 聂勤, 陈锐海, 刘家宁. 基于远距空空导弹轨迹数值优化的机-弹协同导引方法[J]. 航空学报, 2024, 45(17): 530138-530138. |
[3] | 朱嘉兴, 李奕宁, 牛世勇, 田一松, 李頔, 解一鸣. 基于CFD计算域分区耦合技术的航空微型溢流阀流固耦合全域数值计算[J]. 航空学报, 2024, 45(15): 630202-630202. |
[4] | 刘为佳, 李映坤, 陈雄, 李春雷. 基于流固耦合的激波/边界层干扰作用下壁板颤振特性[J]. 航空学报, 2023, 44(6): 127085-127085. |
[5] | 包文龙, 贾贺, 薛晓鹏, 黄雪姣, 高树义, 荣伟, 王奇, 吴壮志. 开“窗”结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 226936-226936. |
[6] | 刘畅, 张耘隆, 闫指江, 赵磊, 季辰. 锤头体火箭弹性模型脉动压力风洞试验[J]. 航空学报, 2023, 44(23): 128384-128384. |
[7] | 罗剑桥, 解春雷, 金泽华, 孟军辉. 跨介质飞行器近水面滑跳流固耦合仿真及可滑跳区域研究[J]. 航空学报, 2023, 44(21): 528632-528632. |
[8] | 张永杰, 崔博, 王明振, 张楚哲, 罗琳胤, 陈向明, 刘小川. 水陆两栖飞机着水试验与理论分析方法研究进展[J]. 航空学报, 2023, 44(21): 528665-528665. |
[9] | 李秋琳, 周莉, 孙鹏, 史经纬, 王占学. 出口宽高比对S弯喷管流固耦合特性影响[J]. 航空学报, 2023, 44(14): 628204-628204. |
[10] | 汪博, 高培鑫, 马辉, 孙伟, 林君哲, 李晖, 韩清凯, 刘中华. 航空发动机管路系统动力学特性综述[J]. 航空学报, 2022, 43(5): 25332-025332. |
[11] | 童明波, 陈吉昌, 李乐, 肖天航, 古彪, 董登科, 汪正中. 飞行器水载荷结构完整性数值模拟现状与展望-Part I:水上迫降和水上漂浮[J]. 航空学报, 2021, 42(5): 524530-524530. |
[12] | 赵欢, 焦忠泽, 孙丹, 刘永泉, 战鹏, 信琦. 多级刷式密封级间压降分配影响因素数值与实验研究[J]. 航空学报, 2020, 41(10): 123544-123544. |
[13] | 胡文刚, 林长亮, 王刚, 门坤发. 多欧拉域耦合法在平尾鸟撞中的应用[J]. 航空学报, 2020, 41(1): 222860-222860. |
[14] | 邱滋华, 徐敏, 张斌, 梁春雷. 适用于涡激振荡问题研究的并行高精度方法[J]. 航空学报, 2019, 40(3): 122483-122483. |
[15] | 杨尚霖, 陈晓峰, 杜发喜, 雷忠琦, 姚小虎. 机动行为下飞机油箱晃动流固耦合动力学分析[J]. 航空学报, 2019, 40(3): 222471-222471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学