1 |
郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 1-20.
|
|
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 1-20 (in Chinese).
|
2 |
信世军, 郑伟, 王奕迪. 脉冲星角位置对脉冲模板的影响及其削弱策略[J]. 北京航空航天大学学报, 2018, 44(1): 169-175.
|
|
XIN S J, ZHENG W, WANG Y D. Impact of pulsar angular position on pulse template and its compensation method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 169-175 (in Chinese).
|
3 |
梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报, 2015, 37(10): 2356-2362.
|
|
LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2356-2362 (in Chinese).
|
4 |
李艳丽, 郑建华, 高东. 基于FPGA+DSP的X射线脉冲星导航原理样机的设计与实现[J]. 深空探测学报, 2018, 5(3): 226-234.
|
|
LI Y L, ZHENG J H, GAO D. Design and implementation of X-ray pulsar navigation prototype based on FPGA + DSP[J]. Journal of Deep Space Exploration, 2018, 5(3): 226-234 (in Chinese).
|
5 |
黎月明, 邓楼楼, 杨健, 等. 电铸镍Wolter-I型光学系统制造技术发展综述[J]. 空间控制技术与应用, 2020, 46(2): 8-15.
|
|
LI Y M, DENG L L, YANG J, et al. Manufacturing technology and application development of electroformed nickel Wolter-I optical system[J]. Aerospace Control and Application, 2020, 46(2): 8-15 (in Chinese).
|
6 |
ZUO F C, MEI Z W, MA T, et al. Design and development of grazing incidence X-ray mirrors[C]∥ SPIE Proceedings of the Photoelectronic Technology Committee Conferences. Bellingham: SPIE, 2016: 979610.
|
7 |
李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报, 2017, 38(5): 1-9.
|
|
LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 1-9 (in Chinese).
|
8 |
李春芳. Wolter X射线成像系统设计及成像质量分析[D]. 大连:大连理工大学, 2007: 24-33.
|
|
LI C F. Design and imaging quality analysis of Wolter X-ray imaging system[D]. Dalian: Dalian University of Technology, 2007: 24-33 (in Chinese).
|
9 |
MOLENDIS. The role of the background in past and future X-ray missions[J]. Experimental Astronomy, 2017, 44(3): 263-271.
|
10 |
蒋文丽, 戚利强, 韩大炜, 等. 一种快速估算聚焦型空间X射线仪器粒子本底水平的方法及应用[J]. 物理学报, 2020, 69(15): 150701.
|
|
JIANG W L, QI L Q, HAN D W, et al. Method and application of fast estimating particle background level for space-based focusing X-ray instruments[J]. Acta PhysicaSinica, 2020, 69(15): 150701 (in Chinese).
|
11 |
FIORETTI V, BULGARELLI A, MALAGUTI G, et al. The low Earth orbit radiation environment and its impact on the prompt background of hard X-ray focusing telescopes[C]∥Proceedings of SPIE Astronomical Telescopes + Instrumentation, High Energy, Optical, and Infrared Detectors for Astronomy V. Bellingham: SPIE, 2012: 833-848.
|
12 |
ZOGLAUER A, WEIDENSPOINTNER G, WUNDER-ER C B, et al. Status of instrumental background simulations for gamma-ray telescopes with Geant4[C]∥Nuclear Science Symposium Conference Record. New York: IEEE, 2008: 2859-2864.
|
13 |
VALENTINA F. Geant4 simulation of the HITOMI/SXS instrumental background[C]∥The 13th Geant4 Space Users’ Workshop, 2018: 7.
|
14 |
CLUCAS S. The space environment information system (SPENVIS)[EB/OL]. (2022-08-26) [2022-11-30]. .
|
15 |
刘建忠, 王勇, 姚小丽, 等. 空间辐射剂量测量简介[J]. 中国辐射卫生, 2010, 19(4): 458-461.
|
|
LIU J Z, WANG Y, YAO X L, et al. Brief introduction to space radiation dosimetry monitoring[J]. Chinese Journal of Radiological Health, 2010, 19(4): 458-461 (in Chinese).
|
16 |
高欣, 杨生胜, 牛小乐, 等. 空间辐射环境与测量[J]. 真空与低温, 2007, 13(1): 41-47.
|
|
GAO X, YANG S S, NIU X L, et al. Space radiation environments and dosimetry[J]. Vacuum and Cryogenics, 2007, 13(1): 41-47 (in Chinese).
|
17 |
CUCINOTTAF,SHAVERSM, SAGANTI P B, et al. Radiation protection studies of international space station extravehicular activity space suits: NASA/TP2003-212051[R]. Washington, D.C.: NASA, 2003.
|
18 |
路伟. Geant4的开发及其在空间辐射效应分析中的应用[D]. 长沙:国防科学技术大学, 2007: 6-15.
|
|
LU W. Implementation of Geant4 and its applications to the analysis of space radiation effects[D]. Changsha: National University of Defense Technology, 2007: 6-15 (in Chinese).
|
19 |
李刚, 谢斐, 张娟, 等. 准直型空间X射线望远镜本底研究概述[J]. 天文学进展, 2015, 33(2): 233-249.
|
|
LI G, XIE F, ZHANG J, et al. Introduction to the background study for X-ray collimated telescope[J]. Progress in Astronomy, 2015, 33(2): 233-249 (in Chinese).
|
20 |
VETTE J. The NASA/National Space Science Data Center trapped radiation environment model program, 1964—1991[R]. Washington, D.C.: NASA, 1991.
|
21 |
BADHWAR G D, O’NEILL P M. Galactic cosmic radiation model and its applications[J]. Advances in Space Research, 1996, 17(2): 7-17.
|
22 |
NYMMIK R A, PANASYUK M I, PERVAJA T I, et al. Amodel of galactic cosmic ray fluxes[J]. International Journal of Radiation Applications and Instrumentation, Part D, Nuclear Tracks and Radiation Measurements, 1992, 20(3): 427-429.
|
23 |
AGOSTINELLI S, ALLISON J, AMAKO K, et al. Geant4—A simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 506(3): 250-303.
|
24 |
ALLISO J, AMAKO K, APOSTOLAKIS J, et al. Geant4 developments and applications[J]. IEEE Transactions on Nuclear Science, 2006, 53(1): 270-278.
|
25 |
WRIHGT D H, MAIRE M. Geant4 physics reference manual[EB/OL]. (2012-11-30) [2022-06-21]. .
|
26 |
聂鹏煊, 汪一夫, 郑涛, 等. CsI(Tl)对高能质子能量响应的蒙特卡罗研究[J]. 武汉科技学院学报, 2010, 23(2): 27-32.
|
|
NIE P X, WANG Y F, ZHENG T, et al. Monte Carlo simulation of energy response of CsI(Tl) to high energy proton[J]. Journal of Wuhan University of Science and Engineering, 2010, 23(2): 27-32 (in Chinese).
|