1 |
ZHANG H, JIAO R, XU L P. Orbit determination using pulsar timing data and orientation vector[J]. Journal of Navigation, 2019, 72(1): 155-175.
|
2 |
LIN H Y, XU B, LIU J X. Designing observation scheme in X-ray pulsar-based navigation with probability ellipsoid[J]. Advances in Space Research, 2019, 64(9): 1639-1651.
|
3 |
刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报, 2020, 41(8): 623486.
|
|
LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623486 (in Chinese).
|
4 |
SU J Y, FANG H Y, BAO W M, et al. Fast simulation of X-ray pulsar signals at a spacecraft[J]. Acta Astronautica, 2020, 166: 93-103.
|
5 |
WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538.
|
6 |
帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287.
|
|
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese).
|
7 |
YU W H. Characterization of X-ray pulsar navigation for tracking closed earth orbits[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2310-2313.
|
8 |
HE Y B, MEI Z W, WANG L, et al. The X-ray pulsar navigation technology and recent progresses in deep space exploration[C]∥ Second Target Recognition and Artificial Intelligence Summit Forum. Bellingham: International Society for Optics and Photonics, 2020: 11427.
|
9 |
WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846.
|
10 |
XU Q, WANG H L, FENG L, et al. A novel X-ray pulsar integrated navigation method for ballistic aircraft[J]. Optik, 2018, 175: 28-38.
|
11 |
SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019075.
|
12 |
SU Q Y, HUANG Y. Observability analysis and navigation algorithm for distributed satellites system using relative range measurements[J]. Journal of Systems Science and Complexity, 2018, 31(5): 1206-1226.
|
13 |
XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233: 4017-4031.
|
14 |
LI Y, LI X, WU P, et al. Integrating satellite-to-satellite tracking with star tracker navigation for satellite constellation at earth-moon L2 point [J]. Journal of Chinese Inertial Technology, 2020, 28(1): 61-66.
|
15 |
WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research, 2013, 51(12): 2394-2404.
|
16 |
WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica, 2017, 138: 68-78.
|
17 |
GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal, 2019, 19(3): 1127-1134.
|
18 |
李晓宇, 姜宇, 金晶, 等. 脉冲星导航系统的星历表误差RKF校正算法[J]. 宇航学报, 2017, 38(1): 26-33.
|
|
LI X Y, JIANG Y, JIN J, et al. RKF method for pulsar based navigation with emphasis error correction[J]. Journal of Astronautics, 2017, 38(1): 26-33 (in Chinese).
|
19 |
房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1-15.
|
|
FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control and Detection, 2018, 1(1): 1-15 (in Chinese).
|
20 |
PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297.
|
21 |
RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings—Radar, Sonar and Navigation, 2003, 150(2): 65.
|
22 |
LEI M, VAN WYK B J, QI Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 37-57.
|
23 |
秦永元, 张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998.
|
|
QIN Y Y, ZHANG H Y, WANG S H. Kalman filter and principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1998 (in Chinese).
|
24 |
WEI Q L, LEWIS F L, SUN Q Y, et al. Discrete-time deterministic Q-learning: A novel convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(5): 1224-1237.
|
25 |
LUO B, WU H N, HUANG T W. Optimal output regulation for model-free quanser helicopter with multistep Q-learning[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4953-4961.
|
26 |
LOW E S, ONG P, CHEAH K C. Solving the optimal path planning of a mobile robot using improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161.
|
27 |
XIONG K, WEI C L, ZHANG H Y. Q⁃learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control, 2021, 23(4): 1803-1816.
|
28 |
SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63.
|
29 |
BUSSE F D, HOW J P, SIMPSON J. Demonstration of adaptive extended Kalman filter for low-earth-orbit formation estimation using CDGPS[J]. Navigation, 2003, 50(2): 79-93.
|
30 |
HANLON P D, MAYBECK P S. Multiple-model adaptive estimation using a residual correlation Kalman filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 393-406.
|