周庆勇1,2(), 魏子卿1,2, 雷耀虎3, 刘思伟1,2, 郝晓龙4, 吴富梅1,2, 杨彦佶5, 强鹏飞6
收稿日期:
2021-11-02
修回日期:
2021-11-26
接受日期:
2021-12-29
出版日期:
2023-02-15
发布日期:
2023-02-15
通讯作者:
周庆勇
E-mail:zjlzqy1986@163.com
基金资助:
Qingyong ZHOU1,2(), Ziqing WEI1,2, Yaohu LEI3, Siwei LIU1,2, Xiaolong HAO4, Fumei WU1,2, Yanji YANG5, Pengfei QIANG6
Received:
2021-11-02
Revised:
2021-11-26
Accepted:
2021-12-29
Online:
2023-02-15
Published:
2023-02-15
Contact:
Qingyong ZHOU
E-mail:zjlzqy1986@163.com
Supported by:
摘要:
深空基准是进入、利用和控制太空的基础,X射线望远镜是构建脉冲星深空基准的重要观测设备。首先,论述了脉冲星计时在深空基准建立中的作用,定性分析了毫秒脉冲星空间观测对X射线望远镜的需求,系统总结了X射线望远镜的国内外技术现状及发展趋势;其次,针对X射线毫秒脉冲星观测中脉冲信号弱而非脉冲信号及空间弥散本底较强的特点,提出了利用毫秒脉冲星高分辨率成像观测抑制非脉冲噪声的方法,并初步设计了一种高分辨率低噪声X射线望远镜;最后,分析了不同的脉冲信号流量、非脉冲信号流量、角分辨率及单次镜片反射效率分别对聚焦成像型、聚焦非成像型和准直非成像型X射线望远镜脉冲星观测信噪比的影响,发现聚焦成像型X射线望远镜在弱脉冲信号和强非脉冲信号流量下具有较好的探测能力。同时计算结果表明:在相同条件下,聚焦成像型望远镜对5颗导航脉冲星的探测灵敏度,比美国中子星内部组成探测器(NICER)的X射线计时仪器(XTI)有不同程度的提高。可见,设计的聚焦成像型X射线望远镜,能够有效地提高毫秒X射线脉冲星的观测能力,能为国家综合定位导航授时(PNT)及深空基准体系的建设提供硬件支持。
中图分类号:
周庆勇, 魏子卿, 雷耀虎, 刘思伟, 郝晓龙, 吴富梅, 杨彦佶, 强鹏飞. 面向脉冲星深空基准建立的X射线望远镜及发展设想[J]. 航空学报, 2023, 44(3): 526608-526608.
Qingyong ZHOU, Ziqing WEI, Yaohu LEI, Siwei LIU, Xiaolong HAO, Fumei WU, Yanji YANG, Pengfei QIANG. X-ray telescope for pulsar deep space reference and its development vision[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(3): 526608-526608.
表2
国内外聚焦型X射线望远镜项目汇总
项目 | X射线望远镜载荷 | 发射年份 | 膜层 | 焦距/m | 能区/keV | 有效面积/cm2 | 角分辨 |
---|---|---|---|---|---|---|---|
HEAO-2[ | 1台4层石英聚焦望远镜 | 1978 | Ni | 3.4 | 0.2~4 | 400 @ 0.25 keV 30 @ 4 keV | 最低至2″ |
EXOSAT[ | 2台铍聚焦望远镜 | 1983 | Au | 1.1 | 0.04~2 | 130@ 0.15 keV | 5″ |
ROSAT[ | 1台微晶玻璃聚焦望远镜 | 1990 | Au | 2.4 | 0.1~2 | 1 141 | 5″ |
ASCA(ASTRO-D)[ | 4台120层圆锥嵌套望远镜 | 1993 | Au | 3.5 | 0.5~10 | 1 200 @ 1 keV 600 @ 7 keV | 3′ |
BeppoSAX[ | 1台30层圆锥嵌套望远镜 | 1996 | Au | 1.85 | 0.1~10 | 22 @ 0.28 keV 50 @ 6 keV | 9.7′@ 0.28 keV 2.1′ @ 6 keV |
Chandra[ | 1台4层嵌套玻璃望远镜 | 1999 | Ir | 10 | 0.2~10 | 400@5 keV | 0.5″ |
XMM Newton[ | 3台58层嵌套镍镀金望远镜 | 1999 | Au | 7.5 | 0.1~12 | 4 425 @ 1.5 keV 1 740 @ 8 keV | 5″~14″ |
Swift/JET-X[ | 1台12层嵌套镍镀金望远镜 | 2004 | Au | 3.5 | 0.2~10 | 164.6@1.5 keV 72.9@8.1 keV | ~20″ |
Suzaku[ | 4台圆锥嵌套望远镜 | 2005 | Au | 4.75 | 0.2~12 | 450@1 keV 250@7 keV | 2′ |
NuSTAR[ | 1台133层热弯玻璃望远镜 | 2012 | Pt/C W/Si | 10 | 3~79 | 847 @9 keV 60 @78 keV | 58″ |
AstroSat[ | 1台40层圆锥嵌套望远镜 | 2015 | Au | 2 | 0.3~8 | 128@1.5 keV | 2″ |
Hitomi[ | 2台硬X射线望远镜(HXT) 1台软X射线成像望远镜(SXI) 1台软X射线光谱望远镜(SXS) | 2016 | Pt/C(HXT) | 12(HXT) 5.6(SXI) 5.6(SXS) | 5~80(HXT) 0.4~12(SXI) 0.3~12(SXS) | 300@30 keV(HXT) 370@1 keV(SXI) 250@1 keV(SXS) | 1.9'@30 keV(HXT) 1.3'(SXI) 1.2'(SXS) |
XPNAV-01[ | 1台时变软X射线光谱仪(TSXS) | 2016 | Au | 1.15 | 0.5~9 | 2.67@1 keV | 15′ |
NICER[ | 56台单次掠射聚焦望远镜 | 2017 | Au | ~1.0 | 0.2~12 | 1 793@1.5 keV | 6' FOV非成像 |
eROSITA[ | 7台54层嵌套镍镀金望远镜 | 2019 | Au | 1.6 | 0.3~10 | ~2 700@1.5 keV | 16'' |
ART-XC[ | 7台28层X射线掠入射镜望远镜 | 2018 | Ir | 2.7 | 4~30 | ~450@8 keV | 1' |
IXPE[ | 3台24层嵌套X射线望远镜 | 2021 | Ni-Co | 4 | 2~8 | 200@2.3 keV(每台) | 25'' |
SVOM[ | 1台龙虾眼结构X射线望远镜 | 2023(预) | Ir | 1.15 | 0.2~10 | 24@1 keV | 不超过6.5' |
CubeX[ | 1台34层X射线成像光谱仪(XIS) | 2023(预) | Au | 0.5 | 0.4~7 | 24@1 keV | 1' |
Einstein Probe[ | 2台54层后随X射线望远镜 | 2023(预) | Au | 1.6 | 0.3~10 | 600@1.25 keV | 30″ |
eXTP[ | 9台能谱测量聚焦望远镜阵列(SFA) 4台偏振测量聚焦望远镜阵列(PFA) | 2027(预) | Au | 5.25 | 0.5~10 | ~820@2 keV(每台) >550@6 keV(每台) | 1'(SFA) 30'' (goal 15'') (PFA) |
表3
不同X射线探测器的比较及应用[13]
类型 | 主要原理 | 技术特点 | 部分卫星应用 |
---|---|---|---|
正比计数器 | 气体电离正比放大 | 技术成熟度高,较好的时间分辨率(约1 μs)和良好探测效率,体积较大,噪声信号抑制甄别能力较差,适合1~30 keV能段测量,高压工作,气体容易泄露,结构要求高 | Uhuru(1970)、HEAO-1(1977)、Einstein(1978)、EXOSAT(1983)、Ariel-5(1974)、ROSAT(1990)、ARGOS(1999) |
微通道板 | 光电转换及通道电子倍增 | 技术成熟,室温工作,最高的时间分辨率,10 ps。量化效率较低,适合0.1~10 keV的软X射线,本底噪声强,高压工作 | ROSAT(1990)、Chandra/HRC (1999)、XPNAV-1(2016)等 |
CCD型半导体 | 位阱效应 | 功耗低,易于小型化,位置分辨优于100 μm,适合0.1~10 keV的软X射线探测,低温工作 | Astro-E(2005)、Chandra/ACIS(1999)、XMM-Newton(1999)、Suzaku(2005)和HXMT/LE(2015) |
硅Pin、SDD | 电子空穴对效应 | 探测效率较高,能量分辨好,体积小,功耗低,易于大面积实现,低温工作 | XPNAV-1(2016)、HXMT/ME(2017)、SEXTANT(2017) |
闪烁体 | 原子激发退激发光 | 探测效率高,结构较为灵活,部分闪烁体材料时间分辨率较高,便于符合或反符合测量,通常用于硬X射线能段 | Vela-5B(1969)、OSO-7(1971)、OSO-8(1975)、HEAO-1(A4)(1977)、CGRO(1991)、BeppoSAX(1996)、RXTE(1995)、HXMT/HE(2017)等 |
量热计 | 能量沉积温度变化 | 技术难度大,探测面积小,时间分辨可达1 ns,超低温工作,难以用于弱信号测量,支撑结构复杂 | ASTRO-H(2016) |
表4
NICER观测5颗脉冲星的理论估计值与实际观测值[102]
脉冲星名称 | 理论估计值/(cts·s-1) | 实际观测结果/(cts·s-1) | SNR估计 | ||||||
---|---|---|---|---|---|---|---|---|---|
探测本底 | 弥散本底 | 星源直流信号 | 非脉冲计数 | 脉冲计数 | 总计数 | 非脉冲计数 | 脉冲计数 | ||
J0534+2200 | 0.05 | 0.15 | 13 860.0 | 13 860.2 | 660 | 11 009.0 | 10 348.8 | 660.2 | 629.21 |
J1939+2134 | 0.05 | 0.15 | 0.04 | 0.24 | 0.029 | 0.946 | 0.920 | 0.026 | 2.67 |
J1824-2452A | 0.05 | 0.15 | 0 | 0.22 | 0.093 | 1.403 | 1.333 | 0.070 | 5.91 |
J0030+0451 | 0.05 | 0.15 | 0.20 | 0.193 | 1.398 | 1.227 | 0.171 | 14.46 | |
J0437-4715 | 0.05 | 0.15 | 0.42 | 0.62 | 0.283 | 2.313 | 1.997 | 0.316 | 20.78 |
1 | 任红飞, 魏子卿, 刘思伟, 等. 国内外深空基准发展现状与启示[J]. 测绘科学与工程, 2020(3): 8-15. |
REN H F, WEI Z Q, LIU S W, et al. Development status and enlightenment of the deep space datum at home and abroad[J]. Geomatics Science and Engineering, 2020(3): 8-15 (in Chinese). | |
2 | 王小军, 汪小卫. 载人火星探测任务构架及其航天运输系统研究[J]. 中国航天, 2021(7): 8-14. |
WANG X J, WANG X W. Human Mars exploration mission architecture and corresponding space transportation system[J]. Aerospace China, 2021(7): 8-14 (in Chinese). | |
3 | 潘永信, 王赤. 国家深空探测战略可持续发展需求:行星科学研究[J]. 中国科学基金, 2021, 35(2): 181-185. |
PAN Y X, WANG C. Developing the planetary science research for the sustainable deep space exploration of China[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(2): 181-185 (in Chinese). | |
4 | 叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10. |
YE P J, ZOU L Y, WANG D Y, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10): 4-10 (in Chinese). | |
5 | HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713. |
6 | DOWNS G. Interplanetary navigation using pulsating radio sources: N74-34150 [R]. Washington, D.C.: NASA, 1974. |
7 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation [D].Maryland: University of Maryland, 2005: 159-175. |
8 | 郑伟, 王奕迪, 汤国建. X射线脉冲星导航理论与应用[M]. 北京: 科学出版社, 2015: 1-28. |
ZHENG W, WANG Y D, TANG G J. X-ray pulsar-based navigation: Theory and applications[M]. Beijing: Science Press, 2015: 1-28 (in Chinese). | |
9 | ANDREW L, FRANCIG S. Pulsar astronomy [M]. 3rd ed. London: Cambridge University Press, 2006: 50-89. |
10 | 周庆勇, 刘思伟, 郝晓龙, 等. 空间X射线观测确定脉冲星星历表参数精度分析[J]. 物理学报, 2016, 65(7): 368-377. |
ZHOU Q Y, LIU S W, HAO X L, et al. Analysis of measurement accuracy of ephemeris parameters for pulsar navigation based on the X-ray space observation[J]. Acta Physica Sinica, 2016, 65(7): 368-377 (in Chinese). | |
11 | 周庆勇, 魏子卿, 闫林丽, 等. 面向综合定位导航授时系统的天地基脉冲星时间研究[J]. 物理学报, 2021, 70(13): 471-483. |
ZHOU Q Y, WEI Z Q, YAN L L, et al. Space/ground based pulsar timescale for comprehensive PNT system[J]. Acta Physica Sinica, 2021, 70(13): 471-483 (in Chinese). | |
12 | 费保俊. 相对论在现代导航中的应用[M]. 2版. 北京: 国防工业出版社, 2015: 206-232. |
FEI B J. Application of relativity in modern navigation[M]. 2nd ed. Beijing: National Defense Industry Press, 2015: 206-232 (in Chinese). | |
13 | 周庆勇. 脉冲星计时模型和自转稳定性研究[D]. 郑州: 解放军信息工程大学, 2011: 1-155. |
ZHOU Q Y. Research on pulsar timing model and stability of spin behaviors[D]. Zhengzhou: PLA Information Engineering University, 2011: 1-155 (in Chinese). | |
14 | 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学, 2019, 49(1): 1-16. |
WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica (Informationis), 2019, 49(1): 1-16 (in Chinese). | |
15 | RAY P, SHEIKH S, GRAVEN P, et al. Deep space navigation using celestial X-ray sources[EB/OL]. (2008-01-30)[2021-12-26]. ,_ION_NTM_January_2008.pdf. |
16 | DAVE B. Overview of the XNAV program X-ray navigation using celestial sources[C]∥20th Annual AIAA/USU Conference on Small Satellites. Reston: AIAA, 2006: 1-11. |
17 | 黄良伟. 基于计时模型的X射线脉冲星自主导航理论与算法研究[D]. 北京: 清华大学, 2013: 1-14. |
HUANG LW. Theory and algorithm study in X-ray pulsar autonomous navigation based on pulsar timing model[D]. Beijing: Tsinghua University, 2013: 1-14 (in Chinese). | |
18 | NASA. 2015 NASA technology roadmaps TA5 communications naviation and orbital debris tracking and characterization syatems[EB/OL]. (2015-08-10)[2021-12-26]. . |
19 | ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The neutron star interior composition explorer (NICER): Mission definition[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 2014: 579-587. |
20 | MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. SEXTANT X-ray pulsar navigation demonstration: Initial on-orbit results[C]∥41st Annual Guidance and Control Conference of American Astronautical Society, 2018: 1-12. |
21 | PEARLMAN A B, MAJID W A, PRINCE T A. Observations of radio magnetars with the deep space network[J]. Advances in Astronomy, 2019, 2019: 6325183. |
22 | KOCZ J, MAJID W, WHITE L, et al. Pulsar timing at the deep space network[DB/OL]. ArXiv preprint: 1703.01342, 2017. |
23 | STUPL J, EBERT M, MAURO D, et al. CubeX: A compact X-Ray telescope enables both X-Ray fluorescence imaging spectroscopy and pulsar timing based navigation[C]∥32nd Annual AIAA/USU Conference on Small Satellites, Reston: AIAA, 2018. |
24 | DENEVA J S, RAY P S, LOMMEN A, et al. High-precision X-ray timing of three millisecond pulsars with NICER: Stability estimates and comparison with radio[DB/OL]. ArXiv preprint: 1902.07130, 2019. |
25 | PRIZ R, GARBIN E, ROLDN P, et al. PulChron: A pulsar time scale demonstration for PNT systems[C]∥Proceedings of the 50th Annual Precise Time and Time Interval Systems and Applications Meeting. Institute of Navigation, 2019. |
26 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. ArXiv preprint: 1908.01922, 2019. |
27 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
28 | 王奕迪. 深空探测中的X射线脉冲星导航方法研究[D]. 长沙: 国防科学技术大学, 2011: 57-81. |
WANG Y D. Research on the X-ray pulsar-based navigation in deep space exploration[D]. Changsha: National University of Defense Technology, 2011: 57-81 (in Chinese). | |
29 | HOBBS G, GUO L, CABALLERO R N, et al. A pulsar-based time-scale from the international pulsar timing array[J]. Monthly Notices of the Royal Astronomical Society, 2019, 491(4): 5951-5965. |
30 | 周庆勇, 魏子卿, 张华, 等. 基于双谱滤波的综合脉冲星时算法研究[J]. 天文学报, 2021, 62(2): 88-97. |
ZHOU Q Y, WEI Z Q, ZHANG H, et al. Research on ensemble pulsar time algorithm based on bispectral filter[J]. Acta Astronomica Sinica, 2021, 62(2): 88-97 (in Chinese). | |
31 | 杨元喜, 杨诚, 任夏. PNT智能服务[J]. 测绘学报, 2021, 50(8):1006-1012. |
YANG Y X, YANG C, REN X. PNT intelligent services[J]. Acta Geodaetica et Cartographica Sinica, 2021(8):1006-1012 (in Chinese). | |
32 | 谢军, 刘庆军, 边朗. 基于北斗系统的国家综合定位导航授时(PNT)体系发展设想[J]. 空间电子技术, 2017, 14(5): 1-6. |
XIE J, LIU Q J, BIAN L. Development assumption of national comprehensive PNT architecture based on BeiDou navigation satellite system[J]. Space Electronic Technology, 2017, 14(5): 1-6 (in Chinese). | |
33 | SHEMAR S, FRASER G, HEIL L, et al. Towards practical autonomous deep-space navigation using X-ray pulsar timing[J]. Experimental Astronomy, 2016, 42(2): 101-138. |
34 | 廖颖宇. 成像式X射线望远镜用模拟程序编写与测试方法研究[D]. 上海: 同济大学, 2020: 2-19 |
LIAO Y Y. Study on simulation program preparation and test method for imaging X-ray telescope [D]. Shanghai: Tongji University, 2020: 2-19 (in Chinese). | |
35 | KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9): 766-774. |
36 | WOLTER V H. Mirror systems with glancing incidence on imaging producing optics for X-ray[J]. Annals of Physics, 1952, 6(10): 94-114. |
37 | PETRE R, SERLEMITSOS P J. Conical imaging mirrors for high-speed X-ray telescopes[J]. Applied Optics, 1985, 24(12): 1833. |
38 | SERLEMITSOS P J. Conical foil X-ray mirrors: Performance and projections[J]. Applied Optics, 1988, 27(8): 1447-1452. |
39 | SCHMIDT W K H. A proposed X-ray focusing device with wide field of view for use in X-ray astronomy[J]. Nuclear Instruments and Methods, 1975, 127(2): 285-292. |
40 | FRASER G W, CARPENTER J D, ROTHERY D A, et al. The mercury imaging X-ray spectrometer (MIXS) on bepicolombo[J]. Planetary and Space Science, 2010, 58(1-2): 79-95. |
41 | GIACCONI R, BRANDUARDI G, BRIEL U, et al. The Einstein/HEAO 2/X-ray observatory[J]. The Astrophysical Journal Letters, 1979, 230: 540. |
42 | UBERTINI P, GEHRELS N, CORBETT I, et al. Future of space astronomy: A global road map for the next decades[J]. Advances in Space Research, 2012, 50(1): 1-55. |
43 | 张双南. 我国空间天文发展的现状和展望[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1308-1320. |
ZHANG S N. Current status and future outlook of the development of China’s space astronomy[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(12): 1308-1320 (in Chinese). | |
44 | 吴伯冰, 马宇蒨, 张双南, 等. 中国空间天文40周年[J]. 空间科学学报, 2021(1): 84-94. |
WU B B, MA Y Q, ZHANG S N, et al. 40 years of space astronomy in China[J]. Chinese Journal of Space Science, 2021(1): 84-94 (in Chinese). | |
45 | O’DELL S L, BRISSENDEN R J, DAVIS W N, et al. High-resolution X-ray telescopes[J]. Adaptive X-Ray Optics, 2010, 7803: 862315 |
46 | YOUNG P S. Fabrication of the high-resolution mirror assembly for the HEAO-2 X-ray telescope[C]∥Proc SPIE 0184, Space Optics Imaging X-Ray Optics Workshop, 1979: 131-138. |
47 | DE KORTE P A J, BLEEKER J A M, DEN BOGGENDE A J F, et al. The X-ray imaging telescopes on exosat[J]. Space Science Reviews, 1981, 30(1): 495-511. |
48 | SERLEMITSOS P J, JALOTA L, SOONG Y. The X-ray telescope on board ASCA[J]. Publications of the Astronomical Society of Japan, 1995, 47: 105-114. |
49 | TANAKA Y, INOUE H, HOLT S S. The X-ray astronomy satellite ASCA[J]. Publications of the Astronomical Society of Japan, 1994, 46(3): L37-L41. |
50 | PIRO L. Scientific capabilities and performances of the BeppoSAX mission[J]. Nuclear Physics B - Proceedings Supplements, 1999, 69(1-3): 3-11. |
51 | WEISSKOPF M C. Chandra X-ray optics[J]. Optical Engineering, 2012, 51(1): 011013. |
52 | LUMB D H. X-ray multi-mirror mission (XMM-Newton) observatory[J]. Optical Engineering, 2012, 51(1): 011009. |
53 | ASCHENBACH B, BRIEL U G, HABERL F, et al. Imaging performance of the XMM-Newton X-ray telescopes[C]∥Astronomical Telescopes and Instrumentation. Proc SPIE 4012, X-Ray Optics, Instruments, and Missions III, 2000, 4012: 731-739. |
54 | GONDOIN P, ASCHENBACH B, BEIJERSBERGEN M W, et al. Calibration of the first XXM flight mirror module: II. Effective area[C]∥SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3444, X-Ray Optics, Instruments, and Missions, 1998, 3444: 290-301. |
55 | BURROWS D N, HILL J E, NOUSEK J A, et al. The swift X-ray telescope[J]. Space Science Reviews, 2005, 120(3): 165-195. |
56 | TAGLIAFERRI G, MORETTI A, CAMPANA S, et al. Swift XRT effective area measured at the Panter end-to-end tests[C]∥Optical Science and Technology, SPIE's 48th Annual Meeting. Proc SPIE 5165, X-Ray and Gamma-Ray Instrumentation for Astronomy XIII, 2004, 5165: 241-250. |
57 | SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(S1): S9-S21. |
58 | MADSEN K K, HARRISON F A, MARKWARDT C, et al. Calibration of the NuSTAR high energy focusing Xray telescope[DB/OL]. ArXiv preprint: 1504.01672, 2015. |
59 | CHRISTENSEN F E, JAKOBSEN A C, BREJNHOLT N F, et al. Coatings for the NuSTAR mission[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011, 8147: 298-316. |
60 | HARRISON F A, CRAIG W W, CHRISTENSEN F E, et al. The nuclear spectroscopic telescope array (NuSTAR) mission[DB/OL]. ArXiv preprint: 1301.7307, 2013. |
61 | SINGH K P, TANDON S N, AGRAWAL P C. Astrosat mission[J]. Proceedings of SPIE, 2014, 9144: 91441S. |
62 | TAKAHASHI T, MITSUDA K, KELLEY R, et al. The ASTRO-H X-ray observatory[J]. Proceedings of SPIE, 2012, 8443: 84431Z. |
63 | TAKAHASHI T, KOKUBUN M, MITSUDA K, et al. The Astro-H (Hitomi) X-ray astronomy satellite[J]. Proceedings of SPIE, 2016, 9905: 99050U. |
64 | SHI Y Q, MEI Z W, HE Y, et al. Ground calibration and in-orbit performance of the time-resolved soft X-ray spectrometer on board XPNAV-1[J]. Proceedings of SPIE, 2020, 6(3): 034006. |
65 | GENDREAU K C, ARZOUMANIAN Z, OKAJIMA T. The Neutron star Interior Composition ExploreR (NICER): An explorer mission of opportunity for soft X-ray timing spectroscopy[C]∥SPIE 8443, Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray, 2012: 322-329. |
66 | FRIEDRICH P, BRAUNINGER H, BUDAU B, et al. Design and development of the eROSITA X-ray mirrors[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 7011, Space Telescopes and Instrumentation 2008: Ultraviolet to Gamma Ray, 2008: 853-860. |
67 | DENNERL K, ANDRITSCHKE R, BOHRINGER H, et al. The calibration of eROSITA on SRG[J]. Proceedings of SPIE, 2020, 11444: 114444Q. |
68 | PAVLINSKY M, LEVIN V, AKIMOV V, et al. ART-XC overview[J]. Proceedings of SPIE, 2018, 10699:106991Y. |
69 | PAVLINSKY M, TKACHENKO A, LEVIN V, et al. The ART-XC telescope on board the SRG observatory[DB/OL]. ArXiv preprint: 2103.12479, 2021. |
70 | BONGIORNO S D, KOLODZIEJCZAK J J, KILARU K, et al. Assembly of the IXPE mirror modules[C]∥ SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 189-200. |
71 | RAMSEY B D, ATTINA P, BALDINI L, et al. The Imaging X-Ray Polarimetry Explorer (IXPE): Technical overview IV[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11821, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, 2021: 225-236. |
72 | MERCIER K, GONZALEZ F, GOTZ D, et al. MXT instrument on-board the French-Chinese SVOM mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 505-519. |
73 | FELDMAN C H, WILLINGALE R, PEARSON J, et al. Calibration of a fully populated lobster eye optic for SVOM[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 182-194. |
74 | ZHANG J, QI L Q, YANG Y J, et al. Estimate of the background and sensitivity of the follow-up X-ray telescope onboard Einstein Probe[J]. Astroparticle Physics, 2022, 137: 102668. |
75 | CHEN Y, CUI W W, HAN D W, et al. Status of the follow-up X-ray telescope onboard the Einstein Probe satellite[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 2020: 885-893. |
76 | BASSO S, CIVITANI M, PARESCHI G, et al. Mirror module design of X-ray telescopes of eXTP mission[J]. Proceedings of SPIE, 2019, 11119: 1111904. |
77 | ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502. |
78 | SHEN Z X, YU J, MA B, et al. Current progress of X-ray multilayer telescope optics based on thermally slumping glass for eXTP mission[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018, 10699: 269-280. |
79 | SOFFITTA P, BARCONS X, BELLAZZINI R, et al. XIPE: The X-ray imaging polarimetry explorer[J]. Experimental Astronomy, 2013, 36(3): 523-567. |
80 | RAY P S, ARZOUMANIAN Z, BRANDT S, et al. STROBE-X: A probe-class mission for X-ray spectroscopy and timing on timescales from microseconds to years[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 2018: 249-268. |
81 | MUSHOTZKY R F, AIRD J, BARGER A J, et al. The advanced X-ray imaging satellite[DB/OL]. arXiv preprint: 1903.04083, 2019. |
82 | BAVDAZ M, WILLE E, AYRE M, et al. ATHENA X-ray optics development and accommodation[C]∥SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 32-46. |
83 | COLLON M J, VACANTI G, GUNTHER R, et al. Silicon pore optics for the ATHENA telescope[J]. Proceedings of SPIE, 2016, 9905: 990528. |
84 | JESSICA A, GASKIN, DOUGLAS A, et al. Lynx X-ray observatory: An overview[J]. Journal of Astronomical Telescopes Instruments and Systems, 2019, 5(2): 021001. |
85 | NASA Marshall Space Flight Center. Lynx X-ray observatory concept study report [EB/OL] [2021-11-01] (2021-12-20). . |
86 | SANTANGELO A, MADONIA R. Fifty years of X-ray astronomy: A look back and into the (near) future[J]. Astroparticle Physics, 2014, 53: 130-151. |
87 | CIVITANI M M, PARODI G, TOSO G, et al. Progress on high-resolution thin full monolithic shells made of glass for Lynx[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 11822: 243-257. |
88 | TENDULKAR M, LIU T N, KIRCHNER-HALL N, et al. Process development for adjustable X-ray mirrors[C]∥SPIE Optical Engineering + Applications. Proc SPIE 11822, Optics for EUV, X-Ray, and Gamma-Ray Astronomy X, 2021: 198-205. |
89 | 赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2016: 10-85. |
ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016: 10-85 (in Chinese). | |
90 | 强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163. |
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese). | |
91 | 王波, 杨彦佶, 王殿龙, 等. X射线聚焦镜的超精密制造[J]. 光学精密工程, 2021, 29(8): 1839-1846. |
WANG B, YANG Y J, WANG D L, et al. Ultra-precision manufacture of X-ray focusing mirror[J]. Optics and Precision Engineering, 2021, 29(8): 1839-1846 (in Chinese). | |
92 | 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学: 物理学 力学 天文学, 2018, 48(3): 6-25. |
YUAN W M, ZHANG C, CHEN Y, et al. Einstein probe: Exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(3): 6-25 (in Chinese). | |
93 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 63-71. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 63-71 (in Chinese). | |
94 | 吴明轩. 基于全反射理论的微孔光学阵列设计方法[D]. 北京:北京空间机电研究所,2015: 2-25. |
WU M X. Design method of microporous optical array based on total reflection theory[D]. Beijing: Beijing Institute of space mechatronics, 2015: 2-25 (in Chinese). | |
95 | LOWE B G, HOLLAND A D, HUTCHINSON I B, et al. The swept charge device, a novel CCD-based EDX detector: First results[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 458(1-2): 568-579. |
96 | 王绶琯, 周又元. X射线天体物理学[M]. 北京: 科学出版社, 1999: 76-112. |
WANG S G, ZHOU Y Y. X-ray astrophysics[M]. Beijing: Science Press, 1999: 76-112 (in Chinese). | |
97 | 徐延庭, 宫超林, 胡慧君, 等. 脉冲星MCP探测器设计与在轨验证[J]. 航天器工程, 2018, 27(5): 114-119. |
XU Y T, GONG C L, HU H J, et al. Design and in-orbit verification of MCP detector for pulsar[J]. Spacecraft Engineering, 2018, 27(5): 114-119 (in Chinese). | |
98 | 黄北举, 张赞, 张赞允, 等. 硅基光电子与微电子单片集成研究进展[J]. 微纳电子与智能制造, 2019, 1(3): 55-67. |
HUANG B J, ZHANG Z, ZHANG Z Y, et al. Research progress on monolithic integration of silicon based optoelectronics with microelectronics[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2019, 1(3): 55-67 (in Chinese). | |
99 | 王兴军, 苏昭棠, 周治平. 硅基光电子学的最新进展[J]. 中国科学: 物理学 力学 天文学, 2015, 45(1): 15-45. |
WANG X J, SU Z T, ZHOU Z P. Recent progress of silicon photonics[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(1): 15-45 (in Chinese). | |
100 | 薛佳琦, 赵晓帆, 崔苇苇, 等. 高速X射线SCD探测器数据获取系统设计[J]. 核电子学与探测技术, 2019, 39(3): 290-296. |
XUE J Q, ZHAO X F, CUI W W, et al. Design and research of data acquisition system for X-ray SCD detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(3): 290-296 (in Chinese). | |
101 | 杨彦佶. CCD型X射线探测器性能研究[D]. 长春: 吉林大学, 2014: 4-30. |
YANG Y J. The study on the performance of X-ray CCDs[D]. Changchun: Jilin University, 2014: 4-30 (in Chinese). | |
102 | ROWAN D M, GHAZI Z, LUGO L, et al. A NICER view of spectral and profile evolution for three X-ray emitting millisecond pulsars[DB/OL]. arXiv preprint: 2001.11513, 2020. |
[1] | 郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航空间试验进展与展望[J]. 航空学报, 2024, 45(6): 28843-028843. |
[2] | 王禹淞, 王奕迪, 郑伟. 太阳信息辅助的脉冲相位估计方法及导航应用[J]. 航空学报, 2023, 44(S1): 727651-727651. |
[3] | 郑伟, 王禹淞, 姜坤, 王奕迪. X射线脉冲星导航方法研究综述[J]. 航空学报, 2023, 44(3): 527451-527451. |
[4] | 李连升, 梅志武, 谢军, 姜坤, 石永强, 曹振, 左富昌. X射线聚焦光学在脉冲星探测领域的应用[J]. 航空学报, 2023, 44(3): 528286-528286. |
[5] | 熊凯, 魏春岭, 李连升, 周鹏. 基于扩维QLEKF的脉冲星/星间定向组合导航[J]. 航空学报, 2023, 44(3): 526232-526232. |
[6] | 徐国栋, 张丹蕾, 徐振东. 脉冲星特征频率信号的到达时间处理方法[J]. 航空学报, 2023, 44(3): 526185-526185. |
[7] | 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023, 44(3): 526510-526510. |
[8] | 周庆勇, 闫林丽, 李连升, 冯来平, 石永强, 孙鹏飞, 方柳, 王龙. XPNAV⁃1卫星聚焦型X射线脉冲星望远镜在轨稳定性分析[J]. 航空学报, 2023, 44(3): 526610-526610. |
[9] | 童明雷, 韩孟纳, 杨廷高, 赵成仕, 朱幸芝. 利用Crab脉冲星X射线观测校准星载原子钟频率[J]. 航空学报, 2023, 44(3): 526566-526566. |
[10] | 盛立志, 郑伟, 苏桐, 张大鹏, 王奕迪, 杨向辉, 徐能, 李治泽. “天枢Ⅱ号”X射线脉冲星导航动态模拟系统及实验验证[J]. 航空学报, 2023, 44(3): 526656-526656. |
[11] | 赵成仕, 高玉平, 童明雷, 朱幸芝, 罗近涛. 导航脉冲星星历表时空参考系统一性问题[J]. 航空学报, 2023, 44(3): 526580-526580. |
[12] | 苏剑宇, 方海燕, 高敬敬, 赵良. X射线脉冲星导航的最优观测周期确定[J]. 航空学报, 2023, 44(3): 526597-526597. |
[13] | 印俊秋, 刘云鹏, 汤晓斌. 基于仿脉冲星X射线信标的航天器定位方法[J]. 航空学报, 2023, 44(3): 526596-526596. |
[14] | 姜坤, 焦文海, 郝晓龙, 刘莹, 王奕迪, 张新源, 国际. 脉冲星试验01星科学试验与成果[J]. 航空学报, 2023, 44(3): 526611-526611. |
[15] | 韩大炜, 郑世界, 庹攸隶, 葛明玉, 宋黎明, 李新乔, 文向阳, 熊少林. 利用GECAM卫星Crab脉冲星观测数据的定轨分析[J]. 航空学报, 2023, 44(3): 526641-526641. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学