1 |
LYNE A G, GRAHAM-SMITH F. Pulsar astronomy[M]. 4th ed. Cambridge: Cambridge University Press, 2012.
|
2 |
NASA. X-ray telescopes - more information[EB/OL]. (2018-12-11) [2022-11-15]. .
|
3 |
LONGAIR M. Antony Hewish (1924–2021): Radioastronomer who won share of Nobel for role in discovering pulsars[EB/OL]. (2021-09-24) [2022-11-15]. .
|
4 |
SHEIKH S I. The use of variable celestial X-Ray sources for spacecraft navigation [D]. Maryland: University of Maryland, 2005.
|
5 |
姚云峰, 方海燕, 朱金鹏, 等. 北斗卫星导航系统X射线脉冲星可见性分析[J]. 空间控制技术与应用, 2020, 46(6): 1-9.
|
|
YAO Y F, FANG H Y, ZHU J P, et al. Visibility analysis of X-ray pulsar for BeiDou navigation satellite system[J]. Aerospace Control and Application, 2020, 46(6): 1-9 (in Chinese).
|
6 |
梁昊, 詹亚锋, 尹海亮. X射线脉冲星导航系统选星方法研究[J]. 电子与信息学报, 2015, 37(10): 2356-2362.
|
|
LIANG H, ZHAN Y F, YIN H L. Research on pulsars selection for X-ray pulsar navigation system[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2356-2362 (in Chinese).
|
7 |
李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报, 2017, 38(5): 1-9.
|
|
LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering, 2017, 38(5): 1-9 (in Chinese).
|
8 |
左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 030702.
|
|
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 030702 (in Chinese).
|
9 |
赵大春. 软X射线掠入射集光系统设计及加工技术研究[D]. 北京: 中国科学院大学, 2016: 43-92.
|
|
ZHAO D C. Study on design and processing technology of soft X-ray grazing incidence light collection system[D]. Beijing: University of Chinese Academy of Sciences, 2016: 43-92 (in Chinese).
|
10 |
KIRKPATRICK P, BAEZ A V. Formation of optical images by X-rays[J]. Journal of the Optical Society of America, 1948, 38(9):766–773.
|
11 |
NASA. International X-ray observatory[EB/OL]. [2022-11-15]. .
|
12 |
MARSIKOVA V. X-ray optics: Wolter[C]∥Proceedings of the International Workshop on Astronomical X-Ray Optics, 2009.
|
13 |
NASA. High energy astrophysical observatory series [EB/OL]. (2014-02-06) [2022-11-15]. .
|
14 |
NASA. The ROSAT mission[EB/OL]. (2001-07-06) [2022-11-15]. .
|
15 |
NASA. Chandra X-ray observatory[EB/OL]. (2022-07-29) [2022-11-15]. .
|
16 |
强鹏飞, 盛立志, 李林森, 等. X射线聚焦望远镜光学设计[J]. 物理学报, 2019, 68(16): 158-163.
|
|
QIANG P F, SHENG L Z, LI L S, et al. Optical design of X-ray focusing telescope[J]. Acta Physica Sinica, 2019, 68(16): 158-163 (in Chinese).
|
17 |
NASA. Nuclear spectroscopic telescope array, or NuSTAR. (2012-06-01) [2022-11-15]. .
|
18 |
SERLEMITSOS P J, SOONG Y, CHAN K W, et al. The X-ray telescope onboard Suzaku[J]. Publications of the Astronomical Society of Japan, 2007, 59(S1): S9-S21.
|
19 |
NAKAZAWA K, SATO G, KOKUBUN M, et al. Hard X-ray imager onboard hitomi (ASTRO-H)[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2018, 4(2): 021410.
|
20 |
GENDREAU K C, ARZOUMANIAN Z, ADKINS P W, et al. The Neutron star Interior Composition Explorer (NICER): Design and development[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 420-435.
|
21 |
黎月明, 杨健, 左富昌, 等. X射线反射镜NiP芯模超精密车削技术研究[J]. 红外与激光工程, 2022, 51(7): 380-386.
|
|
LI Y M, YANG J, ZUO F C, et al. Research on ultra-precision turning technology of NiP-coated mandrel for X-ray mirrors[J]. Infrared and Laser Engineering, 2022, 51(7): 380-386 (in Chinese).
|
22 |
BILBRO J. Fabrication of a prototype mirror for AXAF-S[C]∥Space Programs and Technologies Conference and Exhibit. Reston: AIAA, 1993: 4251.
|
23 |
ATTINA P, ALIPPI E, CASOLI P, et al. Overview of the SAX X-ray instruments development[C]∥SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 2517, X-Ray and EUV/FUV Spectroscopy and Polarimetry, 1995: 182-208.
|
24 |
CHAMBURE D D, LAIN R, KATWIJK K V, et al. Lessons learnt from the development of the XMM optics[J]. The International Society for Optical Engineering,1999,3739(16): 2-17.
|
25 |
PREDEHL P, ANDRITSCHKE R, BABYSHKIN V, et al. eROSITA on SRG [C]∥Proceedings of SPIE, 2016, 9905: 99051K.
|
26 |
李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报, 2018, 54(11): 49-60.
|
|
LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering, 2018, 54(11): 49-60 (in Chinese).
|
27 |
祝宇轩. EP卫星FXT聚焦镜研究[D]. 长春: 吉林大学, 2022: 101-105.
|
|
ZHU Y X. The study on X-ray focusing mirror of follow-up X-ray telescope on board Einstein probe[D]. Changchun: Jilin University, 2022: 101-105 (in Chinese).
|
28 |
CHRISTE S, GLESENER L, BUITRAGO-CASAS C, et al. FOXSI-2: Upgrades of the focusing optics X-ray solar imager for its second flight[J]. Journal of Astronomical Instrumentation, 2016, 5(1): 1640005.
|
29 |
CITTERIO O, CIVITANI M M, ARNOLD J, et al. Progress on precise grinding and polishing of thin glass monolithic shell (towards WFXT)[C]∥SPIE Optical Engineering + Applications. Proc SPIE 8147, Optics for EUV, X-Ray, and Gamma-Ray Astronomy V, 2011: 397-407.
|
30 |
ANGEL J R P. Lobster eyes as X-ray telescopes[J]. The Astrophysical Journal Letters, 1979, 233: 364.
|
31 |
董联庆, 杨立欣, 苏云, 等. 空间X射线探测技术发展新趋势[J]. 航天返回与遥感, 2022, 43(4): 67-77.
|
|
DONG L Q, YANG L X, SU Y, et al. Development trend of the space X-ray detection technology[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(4): 67-77 (in Chinese).
|
32 |
BELFIORE A, ESPOSITO P, PINTORE F, et al. Diffuse X-ray emission around an ultraluminous X-ray pulsar[J]. Nature Astronomy, 2020, 4(2): 147-152.
|
33 |
COLLIER M R, PORTER F S, SIBECK D G, et al. Invited Article: First flight in space of a wide-field-of-view soft X-ray imager using lobster-eye optics: Instrument description and initial flight results[J]. The Review of Scientific Instruments, 2015, 86(7): 071301.
|
34 |
BERNARDINI M G, XIE F, SIZUN P, et al. Scientific prospects for spectroscopy of the Gamma-ray burst prompt emission with SVOM[J]. Experimental Astronomy, 2017, 44(1): 113-127.
|
35 |
ISHIKAWA K, EZOE Y, NUMAZAWA M, et al. 12-inch X-ray optics based on MEMS process[J]. Microsystem Technologies, 2017, 23(7): 2815-2821.
|
36 |
FUKUSHIMA A, ISHI D, EZOE Y, et al. Improvement of imaging performance of silicon micropore X-ray optics by ultra long-term annealing[J]. Optics Express, 2022, 30(14): 25195-25207.
|
37 |
BENKHOFF J, MURAKAMI G, BAUMJOHANN W, et al. BepiColombo - mission overview and science goals[J]. Space Science Reviews, 2021, 217(8): 90.
|
38 |
DELLA MONICA FERREIRA D, JAKOBSEN A C, MASSAHI S, et al. X-ray mirror development and testing for the ATHENA mission[C]∥ SPIE Proceedings Space Telescopes and Instrumentation, 2016.
|
39 |
COSINE. Cuatom measurement solution for space, air, field and factory[EB/OL]. .
|
40 |
ZHANG W W, ALLGOOD K D, BISHACH M P, et al. High-resolution, lightweight, and lowcost X-ray optics for the Lynx observatory[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(2): 021012.
|
41 |
WANG Y D, ZHANG S N, GE M, et al. Fast on-orbit pulse phase estimation of X-ray crab pulsar for XNAV flight experiments[J]. IEEE Transactions on Aerospace and Electronic System, 2022, doi: 10.1109/TAES.2022.3216822 .
|